
-.----. _.. , .- ._..__ -_. -

NASA Conference Publication 2295

CYBER 200
Applications

Seminar

NASA 1
CP
229.5 ’
C.l

LOAN COPY: RETURN TO ;
AFWL TEC’ INICAL LISRARY
KIRTIANO AFB, NM 8710

Proceedings of a seminar held in
Lanham, Maryland

October 1 O-l 2, 1983

TECH LIERARY KAFB, NM

NASA Con.ference Pubh
I 111111 lllll1111111 lllll lllll lllll lul Ill

0079237

CYBER 200
Applications

Seminar

J. Patrick Gary, Compiler
Goddard Space Flight Center

Greenbelt, Maryland

Proceedings of a seminar sponsored by
NASA Goddard Space Flight Center and

Control Data Corporation and held in
Lanham, Maryland

October 10-12, 1983

runsn
khonal Aeronautics

and Space Administration

Scientific and Technical,
Information Branch

1984

-

We would like to publicly acknowledge and gratefully thank the large number of
people who contributed their efforts toward making the CYBER 200 Applications
Seminar the success that it was. First and foremost among these is Dr. Sidney
Fernbach who served as Executive Chairperson in planning and convening the
Seminar. Appreciation is further extended to the session chairmen, Drs.
Bongiorno, Numrich, and Schneck, and to all of the presenters, including Dr. J.
Decker for his after dinner speech entitled, “U.S. Government Study on
Supercomputers.”

A special note of thanks is offered to the behind-the-scene work of Cheryl Chase
and Jean DellAmore for planning and effecting logistic arrangements, and to the
receptionist/message support work of Lori NeLson, Brenda Moldawer, and Linda
Ficken. Lastly, special appreciation is extended to Brenda Moldawer for the post-
seminar compilaticn of these proceedings.

J. Patrick Gary
GSFC Host

John Zelenka
CDC Host

. . . 111

PREFACE

The CYBER 200 Applications Seminar, held on October 10-12, 1983, in Lanham,
Maryland, under the sponsorship of NASA/Goddard Space Flight Center and
Control Data Corporation, is the second of its kind. These proceedings comprise
the majority of the papers presented at the meeting. Papers for the seminar
were selected on the basis of showing a broad distribution of applications for
which the CYBER 200 may be well suited. These ranged from problems in
meteorology to problems in economics. A breakdown of the disciplines
represented is shown below. Some of the papers actually could fall in more than
one category, but only one is indicated for each.

Papers

Meteorology/Oceanography
Chemistry
Math Algorithms for 205
Fluid Dynamics
Monte Carlo Methods
Petroleum
Electronic Circuit Simulation
Biochemistry
Lattice Gauge Theory
Economics
Ray Tracing

5
4
3
3
3

;
1
1
1
1

In the first seminar held in August 1982, it was evident that much work was yet to
be done in learning to use a vector machine. At that time, only a few of the
CYBER 205% had been installed. One year later, we see numerous examples of
good vectorizing work carried out by still relatively inexperienced vector com-
puter users. Clearly, in time we shall see a great deal more optimization and
effective performance becoming routine.

V

_-

CONTENTS

CYBER 200 Applications Seminar

Executive Chairman: Dr. Sidney Fernbach

Hosts: J. Patrick Gary, Goddard Space Flight Center
John Zelenka, Control Data Corporation

Page

ACKNOWLEDGMENTS
. . .

. 111

PREFACE . V

SESSION I

Chairman: S. Fernbach, Executive Consultant

MATHEMATICAL ALGORITHMS TO MAXIMIZE PERFORMANCE IN
NUMERICAL WEATHER PREDICTION

A. Foreman, United Kingdom Meteorological Center 3

COMPUTER SIMULATIONS OF SPACE-BORNE METEOROLOGICAL
SYSTEMS ON THE CYBER 205

M. Halem, NASA Goddard Space Flight Center 17

OPERATIONAL NUMERICAL WEATHER PREDICTION ON THE CYBER
205 AT THE NATIONAL IMETEOROLOGICAL CENTER

D. Deaven, National Weather Service . 21

OCEAN MODELLING ON THE CYBER 205 AT GFDL
M. Cox, Geophysical Fluid Dynamics

Laboratory/NOAA . 27

MEMORY EFFICIENT SOLUTION OF THE PRIMITIVE EQUATIONS
FOR NUMERICAL WEATHER PREDICTION ON THE CYBER 205

J. Tuccillo, Systems and Applied Sciences
Corporaton . 35

COMPUTER SIMULATION OF PROTEIN SYSTEMS
D. Osguthorpe, P. Dauber-Osguthorpe, J. Wolff,

D. Kitson, A. Hagler
Agouron Institute . 63

vii

SESSION II

Chairman: P. Schneck, ONR

VLSI CIRCUIT SIMULATION USING A VECTOR COMPUTER
S. McGrogan, Control Data Corporation . 71

VECTORIZED MONTE CARLO METHODS FOR REACTOR LATTICE
ANALYSIS

F. Brown, Knolls Atomic Power Laboratory . 79

VIBRATIONAL RELAXATION OF DIATOMIC MOLECULES IN
SOLIDS AT LOW TEMPERATURES

L. Halcomb and D. Diestler, Purdue University 85

CHEMICAL APPLICATION OF DIFFUSION QUANTUM
MONTE CARLO

P. Reynolds and W. Lester Jr., Lawrence Berkeley
Laboratory . 103

A HIGHLY OPTIMIZED VECTORIZED CODE FOR MONTE CARLO
SIMULATIONS OF SU(3) LATTICE GAUGE THEORIES

D. Barkai, Control Data Corporation
K. Moriarty, Dalhousie University
C. Rebbi, Brookhaven National Laboratory . 119

ADAPTING ITERATIVE ALGORITHMS FOR SOLVING LARGE SPARSE
LINEAR SYSTEMS FOR EFFICIENT USE ON THE CDC CYBER 205

D. Kincaid and D. Young, University of Texas 147

FUNDAMENTAL ORGANOMETALLIC REACTIONS: APPLICATIONS
ON THE CYBER 205

A. Rappe, Colorado State University ...163

SESSION III

Chairman: R. Numrich, Control Data Corporation

THREE-DIMENSIONAL FLOW OVER A CONICAL AFTERBODY
CONTAINING A CENTERED PROPULSIVE JET: A NUMERICAL
SIMULATION

G. Deiwert, NASA/Ames Research Center
H. Rothmund, Control Data Corporation - . 187

. . . Vlll

I ~-------.-- -..- ~_

Page

STEADY VISCOUS FLOW PAST A CIRCULAR CYLINDER
B. Fornberg, California Institute of Technologyi.. . 201

NAVIER-STOKES SIMULATION OF HOMOGENEOUS TURBULENCE ON
THE CYBER 205

C. Wu, J. Ferziger, D. Chapman, Stanford University
R. Rogallo, NASA/Ames Research Center . 227

EFFICIENT SPARSE MATRIX MULTIPLICATION SCHEME FOR
THE CYBER 203

J. Lambiotte, Jr., NASA/Langley Research Center 243

MODELING MATERIAL FAILURE WITH A VECTORIZED ROUTINE
S. Cramer and J. Goodman, Colorado State

University . 259

ALGORITHMS FOR SOLVING LARGE SPARSE SYSTEMS OF
SIMULTANEOUS LINEAR EQUATIONS ON VECTOR PROCESSORS

R. Davis, Control Data Corporation . 275

SESSION IV

Chairman: V. Bongiorno, Control Data Corporation

PRELIMINARY RESULTS IN IMPLEMENTING A MODEL OF
THE WORLD ECONOMY ON THE CYBER 205: A CASE OF
LARGE SPARSE NONSYMMETRIC LINEAR EQUATIONS

D. Szyld, Institute for Economic Analysis
New York University . 279

MONTE CARLO CALCULATIONS OF ELEMENTARY PARTICLE
PROPERTIES

G. Guralnik, T. Warnock, C. Zemach, Brown
University . 291

VECTORIZED MULTIGRID POISSON SOLVER FOR THE CDC
CYBER 205

D. Barkai and A. Brandt, Control Data
Corporation . 299

ix

THE VECTORIZATION OF A RAY T.RACING PROGRAM FOR IMAGE
GENERATION

D. Plunkett, J. Cychosz, M. Bailey, Purdue
University CADLAB . 315

A KOSLOFF/BASAL METHOD, 3D MIGRATION PROGRAM
IMPLEMENTED ON THE CYBER 205 SUPERCOMPUTER

L. Pyle and S. Wheat, University of Houston 327

VECTORIZATION OF A PENALTY FUNCTION ALGORITHM FOR
WELL SCHEDULING

I. Absar, SOHIO Petroleum Company . 363

MATHEMATICAL ALGORITHMS TO MAXIMIZE PERFORMANCE
IN NUMERICAL WEATHER PREDICTION

AILEEN FOREMAN

UNITED KINGDOM METEOROLOGICAL CENTER

BRACKNELL, BERKSHIRE
UNITED KINGDOM

.-

Aileen Foreman

Mathematical Algorithms to Hsximize Performance in Numerical Weather Prediction

Introduction

Numerical weather prediction models, which involve the solution of non-linear
partial differential equations at point6 on an extensive three-dimensional grid,
are ideally suited for processing on rector machines. It wa6 logicsl therefore
that the new global forecast model to be implemented at the Heteorological Office
should be written in vector code for the Cyber 205.

In order to achive full efficiency and to reduce 6torage requirement8 the
model used 32-bit arithmetic which had been found to provide high enough precision.
Unfortunately, however, the trigonometrical and logarithmic function6 provided
by CDC could only handle 64-bit vectors and, although written in efficient scalar
code, did not take advantage of the epecid facilities of a rector processor. It
wa6 therefore necessary to rewrite the function6 in rector code to handle both
32 and 64-bit vectors. There was also no bslf-precision compiler avsilable for
the Cyber 205 at that time and so the functiond, like the model, had to mske
extensive use of the "specisl call" syntax. Thie made the code more difficult to
write but it allowed much greater flexibility in that it becsme possible to accesd
the exponent of a floating-point number independently of its coefficient.

This paper presents a description of the technique6 and it mammarises the
results which were achieved. One example, the logarithmic function, is treated
here in detail to illustrate the general approach to the problem.

Derivation of louaritbms

The coding for the logarithm function illustrate6 both the use of the way in
which floating-point numbers are stored and the use of linked triads to gain
additional speed.

To calculate fl= JpDL) we divide the range of x into two, the first of
which is

We first write the value of x in a way which can be related to the format
of stored floating-point numbers. Thus, introducing two new unkuowns n and d,
n being 6x1 integer and $4 "<I 1 we msy write any number as g2 = z*bJ.

Now the Cyber 205 stores the floating-point number as

. 2 ““9 wJj$+fZt = 2? z’. k
factor ZJ

where the
is introduced by normslisation,

Since for logarithms, x must always be positive, for 64-bit number8 bit 17
will be on, 60 j = 46 and for 32-bit numbers bit 9 will be on, so j = 23.

Then relating the two, we have n=cxp+~’

3

As 6n exsmple, if x = 2.0 as a &-bit normalized value
7: = 2’+I 2+L

60 from the above formulae

/I= - cc++4- I and 3Sl.O

Here, we can obtain the values of n and ti very easily as we can access
the exponent and coefficient of a number by using special cdlls.

The next step is to convert the functions into a suitable form for vectorizatiom
end this involves the introduction of a new variable

time as W .

From the original definition

b) For the remaining values of x 9 within the range @
vslue of * is defined by:

-<aa ' the
2

60 that Zr Ltx
I-8

In each ca6e, the problem
is easily done by replacing it
degree of precision:

which c6n be computed at the 66me

then become6 one of vectorizing which
with a truncated series which gives the required

where the constants c, are known.

Then log, (+z =
f) 1-t

Despite its complicated appearance, this reduce6 to eight vector operation6
consisting of a multiplication, six linked triad6 and a final multiplication
by E thus

4

Multiplication

First triad =

Second triad =

Third triad =

to give t2

VI = c,z=+ c5

v2 = V\2Cct

v3 = v2 AC, etc.

Tests, using the 1.5 compiler, and a range of,vector len ths gate the
following results, with times being expressed in units of IO- pf seconds.

Vector length 50 loo 200 500 moo 2ooo yJO0
CTX logarithm6 .:” -55 1.01 2.00 3.66 7.04 21.50
64-bit vector .47 .61 :;8 1.12 2.16 3.87 7.47 20.75
logarithm
32-bit vector .53 .57 .65 .82 1.34 2.20 3.99 9.66
logarithm

The first point to notice here is that the full increase in speed for
32-bit vector8 is only achieved with large vector lengths. Because of the
overheads aseociated with the initiation of vector instructions, this is not
unexpected and is common to all of the functions to be described. What is
unexpected is that no improvement in speed was achieved for our &-bit function
vhen compared to the CDC function. In this respect, this function is unique
among all those treated in this paper. However, the original aim of producing
a 32-bit version has been successfully achieved.

Exp0aentieJ.s

The exponential function is derived from the standard formula
x

e l 2
tr. pa $16

chosen to make use of special calls. k, q and f
are defined as follovs:

If n= Lhk 16~

L 1 lcgLP

then e
It= Lrab 2 [I

and rncti module 16 for =7/O

and tr= ht n
I I

,I and m= 16-n module 16 for SK0
rd

6= 14X -n
c) ig

Now, since m Ojti<IL 2
ml1fL

is integer and , the factor is
obtained from a look-up table of 16 elements of known values, using the "special
call" instruction Q8VXTOV.

Having found the integer h from the above formula, and R mllL from the
look-up table, to obtain the value Zh. ;L*"'= ;tY+mmlrb
exponent part of 2mr“ by using special calla.

5

we add k to the

The factor, $/ 16 is given by

+
= P3p+J2s p,$+ po

-ht' - /r+ p*$ - pc'l
where f ie obtained as above and pJ?IJ b are known constants.

Then, to obtain e * all we need is a final multiply of 2"“ by 2
WqtL

-4 The following results were achieved, times again being given in units of
10 seconds.

vector length 70 yl loo 200 500 loo0 2000 5000
CDC exponential 035 07 .93 1.44 2.86 5.25 10.52 33.36
64-bit vector .47 .6 .78 1.14 2.29 4.15 7.97 22.75
exponential
32-bit vector .47 .56 -68 .93 1.85 3.14 5.85 14.62
exponential

Here, for a vector length of so00 the 32-bit exponential routine is only
40% faster than the 64-bit routine because of the use of the "special call"
Q8VX!FOV. However the 64-bit routine has achieved a considerable speed-up over
the CDC exponential.

The Hyperbolic functions

The routines to calculate the hyperbolic functions
and y= bmhx use the following formula,

p w&x, yz5Az

cash x : 1 &." + e
-zc

-
2 ()

The calculation of a" is as described earlier.
little extra work is required to obtain (A~

During the calculation of e." ,
which avoids the need to call the

exponential routine twice,

The hyperbolic sine is given by

sinh x. : i (2 -e-x)

and sinhz z for ISI< 0.5

Here the two distinct cases are treated independently, so that we are dealing
with shorter vector lengths, and then the results are merged together at the end
of the routine. The polynomial expansion of sinh x can be performed in Beven
vector instructions, by using linked triads,

The hyperbolic tangent is given by

for 0-a < IaLl, 18.0

for # 7 16.4

for xz < - M-0

Again, the diptinct case6 are treated independently 60 that we are dealing
with shorter rector lengths , and again we can u6e linked triads when calculating
the polynomial expansion of CanhaL .

The timings of the hyperbolic sine and hyperbolic tangent routines are data
dependent, but-some sample-timings are
units of 10s4 seconds.

vector length
hyperbolic
cosine
64-bit vector
32-bit vector
hyperbolic
6i.d
64-bit vector
32-bit vector
hyperbolic
tangent
64-bit vector
32-bit vector

10 50 loo

‘-Oa 3 l . :z .88

075
.72 2; :*g .

-66 .87 q-15
.64 .73 .89

1.68 3.33 6.01
1.21 2.30 3.66

I;.$
.

co;;
.

rector lengths we do not hare a great
for longer vector lengths we are approaching -

Again, we see that for very short
advantage by using 32-bit vectors, but
twice the speed of the &-bit functions. There were no CDC function6 available to
compare vith our results.

given Glow. All times are expressed in

200 500 lom 2ooo y300

1.68 3.45 6.41
1.27 2.44 4.44

I;.;;
.

:;A;
.

1.96 3.88 7.27
1.48 2.74 5.00

‘;.f;
.

;;.8$
.

Sines and cosines

The trigonometrical functions, 9% sinx
the polynomial expansion of rinx

and s(=cobZ are calculated from
so that we can make use of linked triads

again. First the input argument needs to be reduced module Lfl . This is achieved
by

letting 4,s 2 1x1
7r

then put 'L=c,-cI. so that *~*'I.

and Lz=*, modulo 4

so Sk(X) is given by
SEflXS sin t for krO

sin (I - a) for k=\
-sin l for h= 2

- s&l (I -;i) for k=3

7

where s;re =
c

znr 1
Cm? for

nro
and

Because the values C+ and Cs are too
32-bit function results:

'Ihe cosine function is given by

64-bit function

the constants

small to affect

Cft3 are known.

the accuracy of the

32-bit vector function

cosx = 5bil where 5v,($tZ.) is calculated as above.

If it is known that the input operand, x, is always between -Ul- and +Zr
radians, such work can be left out of the routine;

for as above let

So for k= +1= 0 ,

for 4=t,= I,

for hzr,:Z I

for h=+,= 3,

f, = 2 I=1
T

and I;. = ;nb

Thus we have two sets of functions, one set to calculate the sine and cosine
of any angle expressed in radians, and the other to calculate the sine and cosine
of angles between -or and +2r radians.

The polynomial expansion of sin(z) can be calculated in ten vector instruction8
including eight linked triad instructions'for the 64-bit function and in eight
vector instructions using six linked triad instructions for the 32-bit functions.

10
-4 Tests gave the following result8 with times given are expressed in units of

seconds.

I

vector length 10 50
m SiXlO 015 .5
64-bit rector .49 .59
sine (all mglem>
52-bit vector .42 .46
sine (all angle81
64-bit vector .37 .44
sine (-Hf

to +z7r 1
32-bit rector .?A '.37
sine (-Lr
to +nr 1

rector length
CDC cosine .P
2,:: yeeor .57 .60

engles)
32-bit vector .69 .47
cosine (all
angles)
64-bit vector .72 .45
cosine (-rn-
to +;z7T >
32-bit vector .67 .37
cosine (-AT
to 4-afl)

100
.64
.72

052

953

.41

100
.68
.73

051

045

-41

200 500 ~~ ~~ 5ooo
.9? 1.72 3.07 6.13 22.98
-98 1.74 3.02 5.59 A4.98

.63 .9a 1.57 2.76 6.35

.72 1.27 2.20 4.07 10.04

050 l 75 A.20 2.09 4.78

200 500 1ooo mx3 5ooo
.99 2.08 3.29 6.68 23.59
.99 1.87 3.19 5.94 16.00

.63 1.0 1.70

.74 1.42 2.40

050 .77 1.37

2.94 6.95

4.45 11.14

2.31 5.51

Thus, we can see that ve need a vector length of 5IXl to 1000 before our
64-bit routines for all angles are faster than the CDC supplied routines, but
that our 52-bit routine8 for restricted angles between -ZlT and *aw are
over four time8 as fast a8 the CDC routine8 for rector length8 of 5CCC.

Similarly for the trigonometrical function, bz tax: we have supFlied
tvo Set8 of functions, one set to calculate the tangent of any angle eXpreSSed
in radian8 in both 64-bit8 and the other to calculate the tangent of angles
between -277 and tnn- radian8 in both 64-bits and 52-bits. The tangent
function is calculated using a polynomial expansion of tan(x) to make use Of
lialced triada. The calculation is performed by first reducing the argument
module fl

then 9 'r, -*a 80 thrt ogr41

Nowlet 5%~~ modulo 8, putting k3 if O$SC3
and k=S-4 if 4_LSSF

9

tar-&g is now given by

tan(%)= tm Cal

I0
where k&b(z) =

z c, a-'
-0

for k-0

for k--l

for k==L

for k=3

to the required degree of precision.

Again, if it is lmovn that the input operand is always between -Zr and
+ZT radians, we can vrite:

In this case 5rTa mochalo 8 t rr

h-., where 04 frr3
and t* r,- j where ++ r,sz

and the calculation continues as before.

The polynomial expansion of tan(z) is calculated in fourteen vector
instructions using tuelte linked triads.

The resulting timing8 of tests are given below, eXpreSSed in units of 10
-4

8eCOnd8.

vector length
.;i .E

100 200 500 loo0 2000 !mo
CDC tangent .91 1.47 2.61 4.71
6J+-bit vector .90 .82 -99 1.35 2.55 4.48

;.fg
.

:"-;;
.

tangent C&l1
angles)
32-bit vector .96 .78 .90 1.14 1.92 3.21 5.59 13.29
tangent (all
angles)
64-bit vector .67 .76 -93 1.25 2.36 4.14 7.74 20.64
tangent (- mr
to +-UT)
32-bit vector -67 .70 -80 .99 1.76 2.94 5.15 11.98
tangent (-UT
to -al-r 1

10

These rtmrlts 6hou that we need a vector length of only about 200 before
our 64-bit tangent function for all angles is faster than the CDC routine, and
that our 32-bit tangent function for restricted angles between -2p and

+X3- radian8 is well over twice a8 fast as the CDC routine.

The Arctanqent function

The arctaagent function J= L&M. cx) is again calculated from a polynomial
expansion 80 that we can use linked triads. The calculation is performed a8
fOuOW8:

For 1x1 .n +I

and for /xl< a+/.

let LUSI
1x1

let La= Ix/

Change the variable to z, defined by
a= 0-a

& +d
where, a is Chosen so that z = 1.0 when 34z+I

Under this condition, a = (I -a)44 -2.n * , and is therefore a
Constant.

Then atan is given by

atan(r>=atan(z>+atan(a)

Here, atan is a constant and need only be calculated once, and we may replace
atan by the t cated series:

dim (*I = 3
amt 1

blz
m=0

For Irl >,n+r,

and for xeo , a& (z) = - ah Ix)

Atan can be calculated in ten vector instructions, eight of which are
linked triad instructions. The results are in the range -F to +r (not
inclusive). z 5

-4 The following results were achieved, times again being given in units of
IO seconds.

vector length
cnc arctangent .g 1:: l?E 4% 3% IE; 4z
64-bit vector -52 .66 .92 1.91 3.07 5.77 15.23
arc tangent
32-bit vector -43 .49 -55 .69 1.10 1.79 3.34 7.27
arctangent

These results are 8pectacular, in that the 32-bit arctangent function is
over six times as fast as the CDC routine and even the 64-bit version has given
a threefold increase in speed.

11

Derivation of arcsine and arccosine fbnctionn

The final trigometric routines to be considered calculate the arcsine and
arccosine of x. The calculations are performed as follows,

for O$Xj '/z , let a=* so that asin = asin

and for *cxg , let t= (1 of)" and asin = r- 2&U Ia)
z

for -I SX<O (asin = asin end the same substitutions are used.

Now the new variable, z, must be between zero and 0.7 so we may write

to the required degree of

The arccosine function is derived from the arcsine using the substitution

aco6SIx) I
T-~~ix~

The polynomial expansion of asin is calculated in thirteen vector
instructions, eleven of vhich ace linked triads. The range of the results for
arccosine is -zr to +_n inclusive, and for arccosine is 0 to7 inclusive.

L t

The following results were achieved , with times expressed in uuits of 10
-4

seconds.

vector length
-lo ii 'O"

200 5w lcxx 2000 5ooo
CDC aecsine

:;2 :61
.87 1.27 2.6

64-bit vector .75 1.04 2.02
arcsine
32-bit vector -54 .57 -58 .73 1.37 2.25 3.91 9.11
arccosine

vector length 10 50 loo 200 px 1000 2000 5coo
CDC arccosine .26 .68 .89 1.27 2.41 4.35
64-bit vector .51 .61 ,76 1.05 1.95 3.44

;.;t
.

$3;
.

arccosine
32-bit vector .48 .5L, .61 .76 1.25 2.07 3.66 8.59
arccosine

Here our 32-bit functions are over three times as fast as the CDC routines, for
vector lengths of 5000.

Conclusion

The trigonometrical and logarithmic functions , as provided by CDC up to and
including version 2.0 of the compiler are, in general, not very efficient. At
the Meteorological Office, we found it necessary to hand-code these functions in
vector syntax to take full advantage of the facilities of the Cyber 205. For the
32-bit versions, which have a high enough precision for most of our purposes,
speed increases of up to six times were obtained and even for our 64-bit versions,

12

increases of'up to three times are possible. Hovever, CDC have undertaken to
proride fully rectorized versions of the trigonometrical andlogarithmic functions
in both 64-bits and 32-bits by release 2.1 of the compiler.

The functions described were written in the "special call" syntax because
of compiler limitations and the difficulties associated with this were partly
offset by the special features vhich vere then available. Users with the 2.0
compiler could find that the extra facilities provided by the "special calls"
do not overcome the difficulties involved with this syntax and that coding
explicitly in the RXTHAN vector syntax achieves sufficient vectorization for
their ova purposes.

13

COMPUTER SIMULATIONS OF SPACE-BORNE METEOROLOGICAL
SYSTEMS ON THE CYBER 205

MILTON HALEM

NASA/GODDARD SPACE FLIGHT CENTER

GREENBELT, MARYLAND

-

COMPUTER SIMULATIONS OF SPACE-BORNE METEOROLOGICAL
SYSTEMS ON THE CYBER 205

M. Halem

NASA/Goddard Space Flight Center
Greenbelt, MD

ABSTRACT

The complete global specification of the state-of-the-
atmosphere on a daily or more frequent basis is required for
numerical weather forecasting. Although the number of
atmospheric variables required are small, namely, temperature,
winds, moisture and surface pressure, globally and throughout
the atmosphere, no single space-borne instrument is able to
meet these requirements at the desired degree of accuracy and
coverage. As a result, investigators have proposed to NASA a
number of composite systems with differing limitations in
accuracy and coverage under different atmospheric conditions.

Because of the extreme expense involved in developing and
flight testing these instruments, an extensive series of
numerical modeling experiments to simulate the performance of
these meteorological observing systems have been performed on
the CYBER 205. The studies compare the relative importance .of
different global measurements of individual and composite
systems of the meteorological variables needed to determine the
state of the atmosphere. The assessments are made in terms of
the systems ability to improve 12 hour global forecasts. Each
experiment involves the daily assimilation of simulated data
that is obtained from a data set we call "nature." This data
is obtained from two sources: first, a long two-month general
circulation integration with the GLAS 4th Order Forecast Model
and second, global analysis prepared by the National
Meteorological Center, NOAA,
twice daily.

from the current observing systems
More than two dozen experiments representing

different possible configurations were carried out and
analyzed. The experiments extend over a typical winter ,month,
February, and successive 12 hour forecasts are made from the
analysis twice daily. Thus, statistics ‘are compiled from a
total of 56 forecasts for each experiment.

This voluminous number of experiments would have taken over a
year on a dedicated 24 hour per day allocation on an Amdahl
V-6. The study was completed in less than a month on an as
available basis on the Cyber 205 at the NASA High' speed
Computing Facility.

17

OPERATIONAL NUMERICAL WEATHER PREDICTION ON THE CYBER 205
AT THE NATIONAL METEOROLOGICAL CENTER

DENNIS DEAVEN

NATIONAL WEATHER SERVICE

WASHINGTON, D.C.

Operational Numerical !&leather Prediction on the Cyber 205 at

the National Meteorological Center

Dennis Deaven

NOAA/NWS

Washington,D.C.

The Development Division of the National Xeteorological Center (NHC)

has the responsibility of maintaining and developing the numerical

weather forecasting systems of the center. Because of the mission of

NX these products must be produced reliably and on time twice daily

free of surprises For forecasters. Personnel of Development Division

are in a rather unique situation. We must develop new advanced techniques

for numerical analysis and prediction utilizing current state-of-the-art

techniques, and implement them in an operational fashion without

damaging the operations of the center.

In the past, modifications have been made to the operational job

suite without adequate testing and evaluation because computational

resources were not available to produce enough case studies for evaluation.

Eopefully, with the computational speeds and resources now available from

the Cyber 205, Development Division Personnel will be able to introduce

advanced analysis and prediction techniques into the operational job

suite without disrupting the daily schedule.

21

The operational job suite prior to the installation of the Cyber

205 contained four major components: 1. A barotropic numerical model

extending over the Northern Hemisphere giving forecasters an early look

at the new synoptic situation immediately after data collection at the

start of the twice daily operational cycle. 2. A Limited Fine Mesh

(JXM) primitive equation numerical model extending over the North

American continent. The LFM is started about 1 hour 45 minutes after

data collection producing numerical guidance for use by forecasters

when they make their 12 to 48 hour forecasts. 3. A global primitive

equation numerical model using a spectral representation to produce

numerical guidance for use by forecasters in the 2 to 5 day range.

This model is started at about 4 hours after each twice daily collection

of atmospheric data. 4. A global data assimilation cycle is started

about 10 hours after data collection and is used to produce the first

guess fields for the next synoptic cycle. The data assimilation cycle

consists of an optimum interpolation analysis and a global spectral

model which are used to produce two six hour analysis/forecast cycles.

In addition to these four major components, a Moveable Fine Mesh model

is available when needed to produce forecasts of hurricane movement.

The hurricane model has the capability to move with the hurricane as it

forecasts the storm track for periods of 48 hours.

22

The operational implementation of these analysis/forecast systems on

the Cyber 205 will have to proceed in a careful controlled manner so that

daily production schedules are maintained. ,For this reason, each comoonent

of the operational suite must be carefully evaluated and tested after

conversion to the Cyber 205. All components of the present system scheduled

for implementation on the Cyber 205 will be converted in their present

form with the current resolution and numerics in order to evaluate their

performance in a parallel fashion. After about a month of successful

parallel tests the component will become operational on the Cyber 205.

The National Weather Service received their Cyber 205 in May of 1983

and the first operational product appeared on August 30, 1983. The LFM

was successfully implemented on the Cyber 205 and has been producing

numerical guidance twice a day since that time. The final version of

the LFM computer program that was implemented takes about 75 seconds of

CPU time to produce a 48 hour forecast. This is about 15 times faster

than the IBM/195 version of the same model. The LFM is a grid-point

model containing 7 layers with 53 x 45 grid points in each layer. Five

prognostic variables (pressure, temperature, moisture, and two components

of wind speed) are specified at each of the 16,695 grid points. The

primitive equations are solved in finite difference form for each of the

prognostic variables and then advanced forward in time with an explicit

23

m. -

time step. Nine 400 second time steps are required for each hour of model

integration which yields a total of 432 explicit time steps to produce

a 48 hour prediction.

The conversion of the LFM computer code to the Cyber 205 was accomplished

in about 1.5 months by a skilled meteorologist/programmer. The 2.0 FORTRAN

compiler was used to produce a half precision version without resorting

to Q8 special calls. The data structure of the original version of the

model was changed extensively to take advantage of long vector lengths.

Minimal vectorization of the radiation and moist physics was achieved

with use of the vector WHERE statement.

Operational use of the Cyher 205 has shown that the system is certainly

reliable and capable of achieving vendor advertised CPU speeds. With

this new resource the National Weather Service should be able to improve

most aspects of numerical weather prediction systems including the

prediction of major precipitation events. With the increase in computing

power, the National Weather Service will be able to run operational

numerical guidance systems with improved analysis methods, improved

model physics and increased mathematical accuracy.

24

OCEAN MODELLJNG ON THE CYBER 205 AT GFDL

MICHAEL D. COX

GFDL/NOAA
PRINCETON UNIVERSITY

PRINCETON, NEW JERSEY

Ocean nodelling on the CYBER 205 at GFDL
Michael D. Cox

1. Introduction

At the Geophysical Fluid Dynamics Laboratory, research is carried out for

the purpose of understanding various aspects of climate, such as its

variability, predictability, stability and sensitivity. The atmosphere and

oceans are aodelled mathematically and their phenomenology studied by computer

simulation methods. The present paper will discuss the present state-of-the-

art in the computer simulation of large scale oceans on the CYBER 205. While

atmospheric modelling differs in some aspects, the basic approach used is

similar.

The equations of the ocean model will be presented in the following

section along with a short description of the numerical techniques used to find

their solution. Section 3 will deal with conputational.considerations and a

typical solution will be presented in section 4.

2. Equations of the model

The model presented here is the multilevel numerical model described in

Bryan (1969). The continuous equations will be given. A detailed description

of the finite difference formulation may be found in the above work. The

equations of motion are the Navier-Stokes equations written in spherical

coordinates and modified by the Boussinesq approximation. Let m=sec4,
.

n=sin$, u=aXm-1 and v=as, where a is the radius of the earth,

the latitude and X the longitude. It is convenient to define the

advection operator

P(X) =ma-l t (uX)x+ (vX.%gl +(wx)r. (1)

The equations of motion on a sphere are

x ut+r(u)-2Rnv=-.a-1(P/PoQ,+F , (2)

27

0 vt+r(v)+2nnu= -a-l(P/po)#+F ,

rVl)=O,

gP=-P,,

(3)

(4)

(5)

where Po is unity in cgs units. The conservation equations for the

temperature and salinity are

Tt+l-YT)=FT (6)

St+IYS)=FS (7)

The terms in F contain effects of mixing as well as external driving forces.

The equation of state

P=P(T,S,z) (8)

is an t:npirically derived formula relating the local density of seawater to

temperature, salinity and depth.

The set of equations (l-8) are cast into finite difference for-n. The

prognostic equations (2,3,6,7) are solved as an initial value problem, placing

all terns except the local time derivative on the right hand side and carrying

out timesteps to predict new values of velocity, temperature and salinity on a

prescribed mesh covering the node1 ocean domain. Given a certain configuration

of steady wind driving and differential surface heating (both entering through

the F terms), a statistical steady state is approached asymptotically in time.

Time scale analysis of Eqs.(6,7) reveals that O(1000) years of integration is

needed to bring the sluggish abyssal layers of the ocean node1 into a steady

state.

28

3. Computational considerations

Let us consider a rectangular ocean basin node1 comparable in size to the

N. Atlantic Ocean. It extends 600 in longitude, 650 in latitude and

4000 meters in depth. It is desirable to cover this domain with a mesh fine

enough to resolve mesoscale (O(100 km)) eddies which play an important role in

transporting various properties through the ocean. The minimum resolution

needed for this purpose is roughly 1/3rd degree in latitude and somewhat

larger, say .4 degree in longitude due to the convergence of meridians on the

globe. This results in a horizontal grid space of 150x195 points. Vertically,

18 levels are needed to resolve the scales of interest. This brings the total

to lust over l/2 million grid points for bhich Eqs.(l-8) must be evaluated each

timestep.

The longest timestep which can be used without incurring numerical

instability is given by the Courant-Friedrichs-Levy condition

cAt/Ax<l (9)

where c is the phase velocity of the fastest moving wave in the ocean. Since

high speed external gravity waves have been filtered from this model by the

condition we0 at the surface, the fastest wave is that associated with the

internal density gradients (internal gravity wave) which has a speed of roughly

3m/sec. The srcallest Ax occurs at the northern wall of the model due to

convergence of meridians, and is about 20 km. The resultant At is such

that roughly 5000 timesteps are necessary to integrate one year. Therefore, 5

million timesteps, or 2.5~1012 grid point evaluations of Eqs.(l-81, are

required to integrate this model to a steady state. Even the fastest modern

day computers cannot accomplish this task in a reasonable time, although steady

progress is being made. The former conputer at GFDL, the Texas Instruments

ASC, took 15 seconds to compute one time step on the above model. At this

speed, 2.4 years of computing would be needed to reach a steady state solution.

Clearly, compromises must be made in designing experiments which are achievable

in a reasonable amount of computer time. This may involve reducing the domain

site. or integrating for a shorter period, or both. (Interesting results nay be

obtained from an integration of O(10) years, particularly for the upper ocean

29

where time scales of adjustment are relatively short.) The greater the

computational speed which can be attained, the less severe the compromises must
be.

In converting the ASC ocean model to the CYBER 205, the most fundamental

alteration of the code had to do with the treatment of land masses.

Previously, the computation was carried out only over ocean points by making

the DO loop limits functions of the placement of land. The contiguity

requirenent of the 205 for vectorization allows only the innermost of the three

dimensional loops to vectorize in this case. An alternative method of handling

land is to compute aA points as if they were ocean and, at the end of the

timestep, restore the land to its specified value using a masking array.

Contiguity is then satisfied and vectorization is enabled through two

dimensions. (The third dimension cannot be vectorized because it is cycled

through memory from disc.) By using the latter technique, the typical vector

length in the computation is.increased iron 150 in the example above (east-west

dimension) to 2700 (east-west times depth dineneion) resulting in a

considerable decrease in the relative time spent in vector startup.

An additional time saving has been accomplished in an area of the code

which is used heavily, but is inherently unvectorizable due to a recursive

property. Using 08 calls to insert machine language directly into the FORTRAN,

CDC personnel have "unrolled" this loop, greatly improving on the code

generated by the compiler for the equivalent FORTRAN loop.

The use of half-precision on all floating point variables has resulted in

a gain of only about 15% in overall running speed, although sections of the

code which are 100% vectorized increase in speed by roughly 40X. Additional

work is needed to determine why the overall gain is so small considering the

high degree of vectorization of the code.

Since the model above is too large to fit into core memory entirely, data

is cycled through memory from disc as it is needed each timestep. If this disc

transfer cannot be buffered sufficiently well, computation ceases while waiting

for the I/O to finish. The result is that the computer may not be used

efficiently, particularly if the other Jobs running concurrently have the same

difficulty. Until recently, this was a severe problem on the 205. The above

model, when in the 205 alone, ran only about 15X of the wall clock time.

Improved I/O schemes have been developed by CDC personnel at GFDL and currently

the same model runs about 80% of the wall clock time when alone. This compares

30

favorably with I/O efficiencies on the ASC.

The CYBER 205 version of the model described above currently takes 4

seconds to compute one timestep, almost a factor of 4 faster than the ASC.

While this speed still does not make the experiment proposed at the beginning

of this section feasible, the compromises which are necessary to produce an

attainable solution are much less severe than before. One such experiment will

be described in the following section.

4. An ocean simulation experiment

If one wishes to study the effects of topography on the dynamics of the

Gulf Stream, an argument can be made,that it is not necessary to consider a

domain as large as the one proposed earlier, and that several decades of

integration is sufficient. Therefore, let us reduce the domain from 65 to 27

degrees in latitude and from 60 to 32 degrees in longitude. Also, for this

purpose, the vertical resolution may be decreased from 18 layers to 5 layers.

This produces a model which takes approximately one hour of 205 time to inte-

grate one year of ocean time. Applying surface wind stress and differential

heating similar to that of the N. Atlantic, this model has been integrated from

rest a total of 20 years. The resulting temperature pattern at the second

layer, centered at 212 meters depth, is shown in Fig. 1. The land mass in the

northwest corner simulates the gross features of the U.S. east coast. A conti-

nental shelf and slope is also included in this solution. The simulated Gulf

Stream is revealed by the tightly packed isotherms along the coast and bending

out to sea at the point representing Cape Hatteras. In agreement with

observations, there exist both cold and warm core "rings" which have broken

from the Stream and are drifting westward. An example of the forner is

centered at about 7OOW, 300N and of the latter at 68OW, 370N.

Three other experiments have been carried out in this series, altering the

topography along the western boundary to study its effect on the path and

behavior of the Gulf Stream.

References

Bryan, K., 1969 A numerical method for the study of the circulation of the

World Ocean. J. Comput. Phys., 4_, 347-376.

31

20”N

I
. ‘k-l/((I)))

8O”W 6O”W

Fig. 1 Temperature at 212 meters depth. The contour interval is 1OC.

32

MEMORY EFFICIENT SOLUTION OF THE PRIMITIVE EQUATIONS
FOR NUMERICAL WEATHER PREDICTION ON THE CYBER 205

JAMES J. TUCCILLO

SYSTEMS AND APPLIED SCIENCES CORPORATION

HYATTSVILLE, MARYLAND

Memory Efficient Solution of the Primitive Equations

for Numerical Weather Prediction on the CYBER 205

James J. Tuccillo

Systems and Applied Sciences Corporation

5809 Annapolis Road

Hyattsville, MD 20784

1. INTRODUCTION

Numerical Weather Prediction (NWP), for both operational and research purposes,

requires not only fast computational speed but also large memory. In this paper I will

discuss a technique for solving the Primitive Equations for atmospheric motion on the

CYBER 205, as implemented in the Mesoscale Atmopsheric Simulation System (MASS)

(Kaplan et. al., 19821, which is fully vectorized and requires substsntially less memory

than other techniques such as the Leapfrog or Adams-Bashforth Schemes. The technique

to be presented uses the Euler-Backard time marching scheme.

Also to be discussed will be several techniques for reducing the CPU time of the

model by replacing %lowt’ intrinsic routines by faster algorithms which use only hardware

vector instructions.

35

2. MODEL BACKGROUND

2.1 Description

MASS is a hydrostatic primative equation model which is run over a limited

area. The model forecast the 3-dimentional structure of wind, pressure,

temperature and moisture. The actual domain of coverage, along with the

horizontal distribution of grid points, is depicted in Fig. 1. The characteristics of

the model are listed in Table 1.

2.2 Uses and Support

The model has been applied primarily to the problem of forecasting the

atmospheric environment within which severe local storms (severe thunderstorms

and tornadoes) are likely to develop. It has also been applied to the problems of

forecasting and investigating east coast cyclogenesis, upper level turbulence and

shear, and boundary layer transport. Support for the model development has been

provided by NASA/Goddard using the computational facilities of NASA/Langley

(CYBER 203) and NASA/Goddard (CYBER 205)

2.3 History

The original version was implemented on a 500K word CDC STAR 100 Vector

Processor at NASA/Langley in the late 70’s using 64-bit FORTRAN. The

availability of the SL/l programming language at Langley, which permitted easy

access to the 32-bit instruction set on the STAR 100, resulted in an effective

doubling of the memory and the model was recoded with larger vectors. This

allowed for an increase in the area over which the model was run while maintaining

the same horizontal and vertical resolution.

36

1 5 9 13 17 21 25 29 33 37 41 ‘IS 49 53 57 61 65 69 XI 77 61 85 69 93 97101105109113117121 125

83

89

K
61
77
n
88
8s
61
!i7
53
¶S

45
41
37
93
28
26
21
17
13
8
5
1 1;

1.1’ =.. -...;. .b .

J 5 8 13 17 21 26 29 33 37 41 45 *II 53 67 61 65 69 73 -K’ 81 85 89 93 87101106109113117121125

FIG, 1 DOMAIN OF COVERAGE BY MASS MODEL AND THE HORIZONTAL
OF GRID POINTS DISTRIBUTION

TABLE 1 CHARACTERISTICS OF MASS MODEL

0

0

0

0

0

0-

0

0

0

0

m(DEsCF?lPTIoN)

Hvmmnc fhHITM hMNI&

TERAIN FQLOWINGSIGHA-P Ctmrmm
LIMITED Am DOHAIN
CM~IMGRIDU~A P~SE~~PHIC~~AP(ARAKAYA"A" Grub>
~TH OFWR Accmm Hmzmm PACE DFFE~NCING
&OmmAccumVm~~ SPACE DFFGNING
~NDOIW Accum TIHE DIF~~~NG
MIADATAI~DERIVED~~H THE LFtl Arwx ~RAWINSO~~DES
INmnrZA~acsBAsEDOIJMECACULGaCV~ATI~
PHvsrcS

-LMGESCMf%fCIPIlATION
-~ETMYB'QWJD~YLAY~
- DRY CoNwpIbN

* - Mosr C~NVECTI~~J(UPIDERDEV~OPMENT)

50 Kn GRIDSPACINGAT 45O11
19Ewuv SPACEDLAY=
128 X 96 COHPUTATIONL DOWN
TI HE DEPENDENT MUNDARY Co~~rnws
COMFWEHEHSIVE~NTEMCTIVE DIAGWJIC PACKA~CE ON THE FRONT END

-vEKTIc#PRoms
- vEmc# CRassEcTIoNs
-Cmsrr\m P~ssla SWACES
- TIHE Hmm~
- TFWXXIES
- VFWKATIONSTAIKTICS

38

In the spring of 1980, the STAR 100 was upgraded to a lm word CDC CYBER

203. The new machine effectively had twice the memory of the STAR 100. The

area over which the model is run was again expanded and the vertical resolution

was increased from 12 to 14 vertical layers.

In the spring of 1983, the model was transferred to the NASA/Goddard

CYBER 205. The model was recoded in CDC FORTRAN 2.0 using 32-bit

arithmetic. After being successfully benchmarked against the Langley version, the

vertical resolution was again increased from 14 to 19 layers. The Goddard version

of MASS on the CYBER 205 executes approximately 3 times faster than the

Langley version on the CYBER 203. This can be explained by

1)Reduction in cycle time from 40 to 20 NS.

2)Linked triad instruction on the CYBER 205.

3)Faster gather/scatter instruction.

4)Coding differences.

3. EQUATION SET

The model utilizes a standard primitive equation set cast in a terrain followingrp

coordinate system. As indicated earlier, the forecasted variables are the 3-D

distribution of wind, pressure, temperature and moisture. The basic prognostic equations

are given below where u and v are x and y coordinate momentum, T is temperature, q is

the moisture mixing ratio andnis the pressure at the terrain minus the pressure at the

top of the model.

39

Three diagnostic equations close the system and are given below where & is the

vertical velocity, 4 is the geopotential energy andCc)is the vertical velocity in pressure

coordinates.

The boundary conditions are

and the definitions for and Vare

o-= P-Ptop 7-l-= P SJR - P t OP

the remaining variables are

40

m= mapscale grid transformation factor

c= P specific heat at constant pressure

R= gas constant for dry air

P sup= pressure at the terrain

Ptop= pressure at the top of the model

X = horizontal eddy diffusivity

4. GRID SYSTEM

The technique for solving the differential equations is to discretize the equations

into finite difference form and solve them on a 3-D grid. The horizontal grid employed is

the Arakawa “A” grid where all dependent variables are defined at all grid points. The

vertical grid is staggered so that u, v, T and q represent layer averages defined at the

midpoint of each layer and and are held at the layer interfaces. The third diagnostic

variable, w, is held with u, v, T and q. This structure is represented in Fig. 2.

5. NUMERICAL TECHNIQUE

5.1 Horizontal Space Derivatives

The fourth order accurate finite difference approximation to an x-direction

space derivative for an arbitrary variable y/ is given below

where i is a horizontal index; An analogous formula is used for y - direction

derivatives.

41

s-- lJ,V,T,Q,w - - - K+l

--- U,V,TJ,w - - - K

64 K-X
--- U,V,T,Q,o - - - K-l

l

FIG, 2 VERTICAL GRID SYSTEM OF MASS

42

-

5.2. Vertical Space Derivatives

A second order accurate finite difference formula is used to approximate the

vertical advection terms of the u,v, T and q prognostic equations. The

representation, for an arbitrary variable p, is given below

where k is a vertical index.

5.3 Time Derivatives

A second order accurate approximation to the time derivatives is used. The

Euler-Backward Technique has the properties of frequency dependent damping and

no computational mode. For an arbitrary variable the finite difference

representation is given as

Prediction

Correction

where n is a time level index and * refers to a intermediate time level.

43

This scheme requires the storage of only one time level of information (time

level n) whereas other explicit schemes such as the Leapfrog Scheme requires the

storage of at least two time levels (n and n-l). The penalty is that twice the

computational work is required as compared with the Leapfrog scheme.

6. BASIC MEMORY REQUIREMENTS

As mentioned earlier, the Euler-Backward scheme for time marching the

prognostic equations for the 3-D structure of wind, pressure, temperature and moisture

requires the storage of only one time level of information. The * ‘ed time level is an

intermediate time level and only needs to be as deep (with respect to the vertical) as is

required to solve the equations at a layer. It should be noted that only the vertical

advection terms couple the model layers together and that to solve the equations at leyer

k requires the dependent variables at layers k+l, k and k-I. Therefore, the * ‘ed time

level only needs to be 3 deep (it holds the prediction values to be used during the

correction step) and can be reused for the solution of each layer.

Given that the 19 model layers contain 128 x 96 grid points each, the basic

memory required is

u (128, 96, 19)

v (128, 96, 19)

T (128, 96, 19)

q (128, 96, 19)

pi (128, 96)

ustar (128, 96, 3)

vstar (128, 96, 3)

44

tstar (128, 96, 3)

qstar (128, 96, 3)

pistar (128, 96)

If an additional layer were to be added only the u, v, T and q arrays would be

increased. The ustar, vstar, tstar and qstar arrays are always dimensioned 3 deep and

this is a function of the vertical advection terms which require 3 layers of storage to

solve the equations.

In contrast, the Leapfrog scheme would require 2 sets of arrays dimensioned 128 x

96 x 19, therefore, there is a considerable memory savings with the Euler-Backward

Scheme. A technique developed by Tuccillo (1983) shows some promise in reducing the

computational work by increasing the premissable timestep.

7. METHOD OF SOLUTION

The method of solution is depicted in Fig. 3 and shows the sequence of steps

required to solve the equations at all layers. Prediction is the step that advances the

solution from the n to the * time level and correction is the step that advances the

solution from the * to the n+l time level. It there are NZ layers then there are 2*NZ

number of steps required to advance the solution one time step. The number above each

line represents the order of solution where the first step is to perform prediction for

layer 1, the second step is prediction at layer 2, the third step is correction at layer 1

and so on. After correction (the 2*NZ step) at layer NZ is finished the solution has been

advanced one time step.

45

LAYER

NZ
2 + NZ-2 2*NZ

NZ- 1
2 + NZ-4 2*NZ-1

3

2

1

2 l NZ-3
l

l 0

0

4
0

2 5

1 3

PREDICTION CORRECTION

FIG, 3 SEQUENCE OF STEPS TO ADVANCE THE SOLUTION
ONE TIMESTEP

46

The *Ied arrays are reused for each layer and the calculations for each layer are

fully vectorized where the vector lengths are NX*NY or 12288. For this vector length

the machine is computing at about 98% of its maximum rate.

8. BOUNDARY CONDITIONS

Since MASS is a limited area model, as opposed to a global model, the solution at

the horizontal boundaries needs to be specified. The technique for specifying the

boundary conditions consist of blending externally calculated values using a weighted

average formula which is represented by

where W = 0 on outer column and row

w= 0.333 on first column and row in

W = 0.666 on second column and row in

w= 1.0 on third column and row in

It should be pointed out that this technique produces an overspecification at the

boundary and higher horizontal diffusion is required near the boundaries to control noise

generation.

This technique is vectorized by holding the externally specified boundary

tendencies in a vector and using the scatter instruction to expand them into the correct

positions prior to computing the weighted average. This technique minimizes to amount

of storage required.

47

9. PROGRAMMING TECHNIQUES

The code Is completely vectorized in the horizontal. The average vector length

is about 12000 which represents the number of horizontal grid points. There is a loop

over the vertical layers.

Some specific techniques used during the coding are

0 32-bit arithmetic

Sensitivity tests have indicated that 32-bits provides enough precision.

Using 32-bits effectively doubles the real memory and halves the execution

time.

0 Explicitly Vectorized

The code does not depend on automatic vectorization by the compiler.

All descriptors are set up with DATA and ASSIGN statements. Special Q8

calls are used where required.

.o Diadic and Triatic Structure

All vector statements are written in a diadic structure (triadic when

linked triads are created) to minimize compiler generated dynamic space

which may cause paging.

0 Subroutines are kept small enough so that the Register File is not

overflowed.

Subroutines which have more local variables then the size of the

register file (approximately 200) can be inefficient since loads from

memory must be executed. AR subroutines are kept small enough so that

the swap instruction can load all necessary local variables at entry.

48

0 Parameter Statement Used for V.ector Dimensions

Vector dimensions are easily changed by changing parameter values..

0 Factoring of Equations to yield Linked Triads

The sequence of instructions have been arranged to yield the maximum

number of linked triads.

0 Run Only in Real Memory

No page faults are generated during the interatlve time marching.

0 Vectors are Grouped on Large Pages

All large vectors are placed in common and grouped on large pages

using loader options.

0 Bit Vectors vs. Gather/Scatter

For those situations where control store or gather/scatter can be

applied, an analysis using the nominal performance figures for each

instruction was performed and the most CPU or memory efficient

techniques was applied.

10. TECHNIQUES FOR REDUCING CPU TIME

A 24-hour simulation with the model requires 1312 timesteps. Each timestep

requires the evaluation of 2*NZ natural logs (for 12288 grid points). This required

approximately 22 mins of CPU time using the 32-bit FORTRAN VHALOG function.

Since the range of arguments for the natural log function was known, a more efficient

49

technique was incorporated where the natural log was approximated with a series

factored using Homer’s Rule. The evaluation requires 11 vector instructions, nine of

which are linked triads, and runs approximately 40 times faster than the FORTRAN

intrinsic function. This technique reduced the CPU time spent evaluating natural logs to

30 sets.

Other techniques for reducing CPU time consist of approximating the **

FORTRAN function with series of square roots (square root in a hardware instruction)

and inverting scalars to generate vector multiplies instead of vector divides.

The version of MASS implemented on the CYBER 205 at NASA/Goddard requires

13 large pages of memory and 15 minutes of CPU time (same as wall time) for a 24 hour

simulation over the area depicted in Fig. 1.

il. EXAMPLE OF OUTPUT

MASS at Goddard features a comprehensive postprocessing system to produce

output from the model for interpretation. The post processing system runs interactively

and produces hard copies on a GOULD electrostatic plotter. Future versions of

the postprocessing system will likely feature interactive color graphics which should

greatly improve the usability of the modeling system as a research tool for studying

atmospheric processes. Figs. 4-12 are examples of the output from three of the six

postprocessing programs currently available.

50

MRSS 2.0 MRSS 2.0
500 500 T T VT VT 2100 2100 GMT 04/02/82 GMT 04/02/82 INIT INIT 1200 1200 GMT GMT 04/02/82 04/02/82

FIG. 4 KASS FORECASTS 500 ME TEMPERATURES (DEGREES CELCIUS)

5

MRSS 2.0
500 z VT 2100 GMT 04/02/82 INIT 1200 GMT 04/02/82

FIG, 5 MASS FORECASTED 500 MB HEIGHTS (METERS) AND

VORTICITY (PER SECOND)

0

MRSS 2.0

500 HNO VT 2100 GMT 04/02/82 INIT 1200 GMT 04/02/82

FIG, 6 MASS FORECASTED 500 MB WIND VECTORS AND ISOTACHS

(METERS PER SECOND)

MRSS 2.0
500 0ME VT 2100 GMT 04/02/82 INIT 1200 GMT 04/02/82

FIG, 7 MASS FORECASTED 500 MB VERTICAL VELOCITY

(MICROBARS PER SECOND)

I 5 9 13 17 21 25 29 33 37 41 45 99 53 57 61 65 69 73 77 61 85 39 93 97lOll~lO91l3l1712ll~

FIG, 8 VERTICAL CROSS-SECTION LOCATOR MAP

1 I 1) 17 21 25 26 33 37 41 I W St4 17 61 #!I 89 73 ~7 61 63 30 @!j ~71011tS1011l3117121125

89
W
85
01

77

73

W

85

I1

57

53

¶9

45

41
87
99
28
25
21

17

13

8

5

1

13.5
13.0
12.5
12.0
11.5
11.0
10.5
10.0
9.5
9.0
6.5
6.0
7.5

g ‘,:I
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.S
1.0
.S
.O

QH - VT 2100 GMT 04/02/82 INIT 1200 GMT 04/02/82

13.5
13.0
12.5
12.0
11.5
11.0
10.5
10.0
9.5
9.0
6.5
8.0
7.5
7.0
6.5 2
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0

.S

.O

FIG. 9 MASS FORECASTED VERTICAL CROSS-SECTION OF RELATIVE HUMIDITY (PERCENT)

13.5
13.0
12.5
12.0
1l.S
11.0
10.5
10.0
9.5
9.0
8.5
8.0
7.5
7.0

g 6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
L.5
1.0
.5
.O

13.5
- 13.0
- 12.5
- 12.0
- 11.5
- 11.0
- 10.5
- 10.0
- 9.5
- 9.0
- 8.5
- 8.0
- 7.5
- 7.0
- 6.5 2
- 6.0
- 5.5
- 5.0
- 4.5
- 4.0
- 3.5
- 3.0
- 2,s
- 2.0
- 1.5
- 1.0

J I- I I I I I i 1 I
.5
.O

vv VT 2100 CMT 04/02/82 INIl 1200 GMT 04/02/U

FIG, 10 FlASS FORECASTED VERTICAL CROSS-SECTION OF VERTICAL VELOCITY

(M I CROBARS PER SECOND)

!50UNDlNt LECATI0NS

FIG, 11 SOUNDING LOCATOR MAP

PT NUMBER 1. ST= PSB

cn
W

600

VT 2100 GMT 04/02/82 INIT 1200 GMT 04/02/82
II~~,‘~!‘~I~!‘~i!‘,!I!“~‘~~’ I:.‘: 1.‘. I’!!““:‘l’!!:!‘!!!l!.“!!‘“’

.,:i!!iq 16151.7

XRFRCE rnEssLM
968.6

L1r-m In3
11.7

mm! Tcwlrl
54.2

LN 1 TEPP IFI
47.1

.70.0 -60.0 -50.0 -4’2.0 -33.0 -20.0 -!cI.? 0.0 10.0 20.0 30.0 40.0

FIG, 12 MASS FORECASTED SOUNDING

12. REFERENCES

Kaplan, M.L., J.W. Zack, V.C. Wong, and J.J. Tuccillo, 1982: Initial Results from a

Mesoscale Atmospheric Simulation System and Comparisons with the AVE-SESAME I

Data Set. Mon. Wea. Rev., 110, 1564-1590.

Tuccillo, J.J., 1983: The Application of Pressure Gradient Force Averaging to the Euler-

Backward Scheme. M.S. Thesis, Old Dominion University.

60

COMPUTER SIMULATION OF PROTEIN SYSTEMS

D. J. OSGUTHORPE,
P. DAUBER-OSGUTHORPE,

J. WOLFF,
D. H. KITSON

AND
A. T. HAGLER

THE AGOURON INSTITUTE

LA JOLLA, CALIFORNIA

Computer Simulation of Protein Systems
D. J. Osguthorpe, P. Dauber-Osguthorpe, J. Wolff, D. H. Kitson and A. T. Hagler

The Agouron Institute, 505 Coast Blvd. South, La Jolla, California 92037.

Inrroducrion. Significant advances are being made in the theoretical treatment of the conformation
and dynamics of biological molecules. Several recent convergent developments are responsible for
opening up new fields of investigation. They include:
1. The development and application of powerful theoretical techniques taken from statistical physics

such as Monte Carlo and molecular dynamics simulations to biological systems.
2. The development of powerful computational hardware such as the Cyber 205.
3. The development of interactive graphics systems.
4. The increasing availability of experimental structural and dynamic data such as the ever-growing

data base of protein crystal structures, small peptide crystal structures and the structural and
dynamic properties of these same molecules in solution.
These developments enabled us to undertake the project of studying ligand binding to dihydro-

folate reductase (DHFR). This is an extremely important enzyme. as it is the target of several drugs
(inhibitors) which are used clinically as antibacterials. antiprotozoals and in cancer chemotherapy. I. z
DHFR catalyzes the NADPH (reduced nicotinamide adenine dinucleotide phosphate) dependent reduc-
tion of dihydrofolate to tetrahydrofolate, which is used in several pathways of purine and pyrimidine
biosynthesis. including that of thymidylate. 3 Since DNA synthesis is dependent on a continuing supply
of thymidylate. a blockade of DHFR resulting in a depletion of thymidylate can lead to the cessation of
growth of a rapidly proliferating cell line.

DHFR exhibits a significant species to species variability in its sensitivity to various inhibitors.
For example, trimethoprim. an inhibitor of DHFR. binds to bacterial DHFR’s 5 orders of magnitude
greater than to vertebrate DHFR’s. 4.3 We were interested in studying the structural mechanics. dynam-
ics and energetics of a family of dihydrofolate reductases to rationalise the basis for the inhibition of
these enzymes and to understand the molecular basis of the difference in the binding constants between
the species. This involves investigating the conformational changes induced in the protein on binding
the ligand. the internal strain imposed by the enzyme on the ligand. the restriction of fluctuations in
atom positions due to binding and the consequent change in entropy. X-ray crystallographic structures
of DHFR from a few species, in complex with various Iigands, are known.6-8 as well as partial data
about the structures in solution. 9-i1 The availability of the structure. in the form of atomic coordinates
for the enzyme system. is a prerequisite for performing’any kind of energy calculations. In addition.
due to the size of these systems as discussed below, only the availability of supercomputers such as the
Cyber 205 make this project feasible.

Computational Techniques.. The techniques we use to investigate the DHFR system all require the
calculation of the potential energy of the molecular system. This potential energy is expressed in terms
of an analytical representation of all internal degrees of freedom and interatomic distances. as in eqn.
(1).

v= x:(Db[l - e-a(bbo’12 - Db) + 1/2 C&(e - Q,-J~ (1)

+ I/2 X.(1 + s cos ti) + l/2 Z%,x’

+ xzFFbb’(b - i$ (b’ - b’)

+ ~~F,,w(e - e,) (8’ - e,‘) + xzFbe (b - b4)) (8 - eo)

+ xFF,,,, cos 6 (e - e,) (8’ - e,‘) + C&;YX’

+ 1,~ [2(r*/r19 - 3(r’/rJ61 + &qi/r

This type of representation of the potential energy in terms of the internal (valence) degrees of
freedom is called a Valence Force Field. Such valence force fields have long been used in vibrational
spectroscopy in order to carry out normal mode analysis. t2 Basically the terms in equation (1) express

63

the energies required to deform each internal coordinate from some unperturbed “standard’ value
denoted by the subscript “0’. The lirst term is a Morse potential which describes the energy required to
stretch each bond from its relaxed value, bo. The second term represents the energy stored in each
valence angle when it is bent from its “standard’ value, 00. The third term represents the intrinsic
energy required to twist the molecule about a bond by a torsion angle, do. The fourth term represents
the energy required to distort intrinsically planar systems by x from their planar conformation, i.e. the
out of plane term. The next terms represent various couplings between internal coordinates, which are
known to be necessary from studies of vibrational spectra. l3 They are the bond-bond, angle-angle.
bond-angle, angle-angle-torsion and out of plane cross-term respectively. The last 3 terms describe the
exchange repulsion, dispersion and coulombic interactions that occur between non-bonded atoms.

The parameters Db , b , & , 4 , and Fij are the force constants for the corresponding
intramolecular deformation, r’ and E characterize the size of the atoms and the strength of the van der
Waals interaction between them, while the qi are the partial charges carried by each atom. The parame-
ters for the functions were derived from fitting a wide range of experimental data including crystal
structure, unit cell vectors and the orientation of the asymmetric unit, sublimation energies, molecular
dipole moments, molecular structure, vibrational spectra and strain energies of small organic
compounds.14-19 Ab-initio molecular orbital calculations have also been used in conjunction with the
experimental data to give information on charge distributions, energy barriers and coupling terms, both
to supplement and confirm the results obtained from the experimental data.20-21

Mnimisation. Given the analytical representation of the potential energy in eqn. cl), we can
minimize this energy with respect to all internal degrees of freedom, i.e. solve the equation

t34axi = 0 i- 1, 3n (2)

where the Xi are the Cartesian coordinates of the molecule.
The minimisation results in the “minimum energy structure” of the system. Analysis of the minimum
energy structure reveals the basic structural features of the system along with the interatomic forces
underlying this minimum energy conformation. At the minimum, we can take second derivatives of
the energy and construct the mass weighted second derivative matrix. From the eigenvalues of this
matrix the vibrational frequencies may be obtained and the normal modes from the eigenvectors.22 The
conformational entropy of the system can now be calculated from the vibrational frequencies using the
Einstein relations.23 The conformational entropy of a system plays an important role in both conforma-
tional equilibria and binding.24

Molecular dynamics. Molecular dynamics is the numerical integration of Newtons classical equa-
tions of motion. Having specified the potential, we define the initial conditions of the system, the coor-
dinates of the protein, inhibitor. solvent and a set of initial velocities. Once the initial conditions are
given, Newtons equations of motion

- SVni ’ ’ ‘7”)/87i = F@i * ’ .7”) = mdt7Jdt2 (3)

are integrated forward in time, in order to compute the atomic trajectoriesii (t)..7” (t) as functions of
time. The forces are calculated from the energy expression in eqn. (1) by taking analytical derivatives.
We then take a small time step, At, of = l(r15 sec. and applying the acceleration as calculated from
Newtons law (eqn. 3), we update the velocity and position of each atom, to a new velocity and position
using a Gear25 predictor-corrector algorithm or a Verlet algorithm. 26 The forces and acceleration at the
new positions are then calculated and we repeat the procedure, thus tracing the trajectories of the
atoms.

Calculations on the Cyber. One of the systems we are studying, the E. cob DHFR-Trimethoprim
complex, is the system we have been using to develop the programs on the Cyber 205. Table I lists the
no. of atoms, internal coordinates and non-bond interactions for this system, to demonstrate the

64

magnitude of the calculation involved.

Table I

E. coli Dihydrofolate Reductase System

atoms

E. coli Dihydrofolate Reductase 2490
Trimethoprim 40
155 Waters 465

2995

Internal Coordinates

Bonds 2875
Valence Angles 4785
Torsion Angles 6784

Bond-Bond cross-terms 4785
Bond-Angle cross-terms 9570
Angle-Angle cross-terms 7584
Angle-Angle-Torsion cross-terms 6784

Non- bond pairs = 1.600,OOO

Minimisation and molecular dynamics both require computing the energy using eqn. cl), changing
the coordinates and repeating this process many times. Note that each energy calculation involves
evaluating the appropriate terms in eqn. (1) for each of the internals listed in table I. Thus the last
three terms in eqn. (1) need to be evaluated for each of the 1.600,OOO non-bonded pairs. As the time
required to compute the change in the coordinates once the energy has been calculated is small. the
time required to calculate the energy determines the time to perform the minimisation, or how many
steps of dynamics can be done. For a minimisation the number of iterations depends on how close to
zero we require the derivatives, for a conjugate gradient minimiser previous experience indicates that
about 3 times the number of atoms iterations are required to get derivatives to less than 0.05
kcal/moi& which is about 10,000 iterations for the protein. In molecular dynamics we would like to
simulate at least 100 picoseconds. preferably a nanosecond, as this is still a very short time compared to
molecular events such as binding. This requires 100,000 i:erations at a 1 femtosecond timestep. Thus
the speed with which the energy calculation is carried out is crucial.

Non-bond interaction calculation. Table II shows the timings of the energy routines used to com-
pute eqn. (1) on the VAX 11/780 and the Cyber 205 for the Dihydrofolate Reductase system. The
non-bond part of the calculation takes by far the major portion of the CPU time, 78% of the iteration
time on the VAX, so this was vectorised first. The routine computes the non-bond energy, see eqn.
(l), by calculating the interaction between all pairs of atoms, except for bonded atoms and l-3 interac-
tions. For a 1OA cutoff this is = 1.6x 106 pairs, which is the reason this is the major time consuming
portion of the energy calculation. This was implemented on the VAX by a residue neighbour list in

65

Table II

Comparison of the Timing of Energy Calculation routines for 1 Iteration

Routine VAX 111780

Bonds 2.42
Valence Angles 9.06
Torsion Angles’ 30.69

CYBER
Vectorised

Large Pages
0.055
0.13
0.55

Bond- bond
Bond-Angle
Angle-Angle
Out of Plane

5.25 0.14
11.9 0.25
16.55 0.!7
2.35 0.10’

Non-Bond 448.98 1.23

Iteration Timing2 573.58 2.7

1. The out of plane routine is not vectorised.
2. The iteration timing is slightly larger than the sum of all the individual routine timings as it in-

cludes the time for the minimisation routine itself.

which for each residue a list of all the residues it interacts with is stored. This neighbour list is set up
prior to the non-bond calculation and has to be recalculated every so often if a cutoff is used. In the
non-bond calculation a loop is performed over all the residues and for each residue the interactions of
all atoms in it with all atoms of the residues in the neighbour list of this residue are computed. This
routine was vectorised by calculating the interaction of 1 atom0 with all its neighbouring atoms as vector
operations. This gives vector lengths of up to 1000 for a 10A cutoff. A bit vector with the length of
the number of atoms in the molecule is set up for each atom which indicates whether an atom interacts
with this atom or not. This is a large array, Nz/2. where N is the number of atoms, but because of the
bit addressing capability of the Cyber 205 this only takes up 70,000 words in memory. The perfor-
mance improvement of this routine after vectorisation is 365 over the VAX, which includes the intrin-
sic scalar speed of the Cyber 205, some 14 times faster than the VAX. The vectorisation of the non-
bond routine took approximately 1 month.

Valence energy calculation. The valence energy and cross-term routines take =20% of the iteration
time on the VAX. These routines were vectorised next, starting with the torsion angle routine which is
the next major time consuming routine, 6% of the iteration time on the VAX. The bond, valence
angle and torsion angle routines already used a list of the internals in the VAX version. These were all
vectorised by creating vectors for the bonds, valence angles and torsion angles, which gives vector
lengths from 3000 to 9000 for the dihydrofolate reductase system. see table I. These vectorisations
resulted in performance improvements of 37 to 90 over the VAX in these routines.
To date we have achieved a net gain in speed over the VAX 1 l/780 of 212 for the enzyme simulation
study described above.

66

References
1.
2.

3.
4.
5.
6.

7.

8.

9.

10.

11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.

24.

25.

26.

J.R. Bertino, Arthritis and Rheumatism, 79, 16 (1973).
J. Bertino and D. Johns, in Cancer Chemotherapy, ed. I. Brodsky, vol. 2, p. 9, Grune and Stratton.
New York (1972).
M. Osbom and F.M. Huennekens, J. Biol. Chem.. 969, 233 (1958).
J. Burchall and G.H. Hitchings, Mol. Phartiacol., 1, 126 (1965).
B.R. Baker, in Medicinal Chemistry 3rd ed., ed. A. Burger, Wiley-Interscience, New York (19701.
D.A. Matthews, R. Alden , J.T. Bolin, S.T. Freer, R. Hamlin, N. Xuong, J. Kraut. M. Poe. M.
Williams, and K. Hoogstein, Science, 197, 452 (1977).
D.A. Matthews, R.A. Alden, J.T. Bolin, D.J. Filman. S.T. Freer, R. Hamlin. W.G.J. Hoi. R.L.
Kisiiuk, E.J. Pastore, L.T. Plante. N. Xuong, and J. Kraut. J. Biol. Chem., 253, 6946 (19781.
D.A. Matthews, R.A. Alden, S.T. Freer , N. Xuong, and J. Kraut, J. Biol. Chem., 254, 4144
(19791.
G. C. K. Roberts, J. Feeney, A. S. V. Burgen, V. Yuferov. J. G. Dann, and R. Bjur, Biochemisrv,
13, 5351 (1974).
J. Feeney, B. Birdsall, J. P. Albrand, G. C. K. Roberts, A. S. V. Burgen, P. A. Charlton. and D.
W. Young, Biochemistry, 20, 1837 (198 1).
A. Gronenborn, B. Birdsall, E. Hyde, G. Roberts, J. Feeney, and A. Burgen, Mol. Pharmacol., 20,
145 (1981).
0. Ermer, Structure and Bonding, 27. 16 1, Berlin (19761.
S. Califano, Pure Appl. Chem., 18, 353 (1969).
A.T. Hagler, E. Huler, and S. Lifson, J. Am. Chem. Sot., 96, 5319 (1974).
A.T. Hagler and S. Lifson, J. Am. Chem. Sot.. 96. 5327 (19741.
A.T. Hagler. S. Lifson, and P. Dauber, J. Am. Chem. Sot., 101, 5 122 (1979).
A.T. Hagier, P. Dauber, and S. Lifson, J. Am. Chem. Sot., 101, 5131 (1979).
P. Dauber and A.T. Hagler, Accrs. of Chem Res., 13, 105 (1980).
P. Dauber-Osguthorpe, J. Wolff, and A. T. Hagler. work in progress
S. Lifson. A.T. Hagler. and P. Dauber, J. Am. Chem. Sot.. 101. 5111 (1979).
A.T. Hagler and A. Lapiccirella, Biopolymers, 15, 1167 (1976).
E.B. Wilson, J.C. Decius, and P.C. Cross, in Molecular Vibrations, McGraw Hill. New York
(19551.
T.L. Hill, in An Introduction to Statistical Thermodynamics, Addison-Wesley, Reading, Mass.
(1960).
P. Dauber , M. Goodman, A.T. Hagler, D.J. Osguthorpe, R. Sharon, and P.S. Stern, Proc. of the
ACS Symposium on Supercomputtrs in Chemistry, 173, 161 (1981).
C.W. Gear, Numerical Initial Value Problems in Ordinary Dtflerential Equations, Prentice Hall, Engl-
wood Cliffs, N.J.
L. Verlet, Phys. Rev., 159, 98 (1967).

67

VLSI CIRCUIT SIMULATION USING A VECTOR COMPUTER

STEPHEN K. MCGROGAN

CONTROL DATA CORPORATION

OAKLAND, CALIFORNIA

VLSI CIRCm SIMULATION USING A VECTOR COMPUTER

Stephen K. McGrogan
Senior Staff Consultant

Control Data Corporation
1 Kaiser Plaza, Suite #301
Oakland, California, 94612

Simulation of circuits having more than 2000 active devices requires the
largest, fastest computers available. A vector computer, such as the CYBER 205,
can yield great speed and cost advantages if efforts are made to adapt the simu-
lation program to the strengths of the computer.

ASPEC and SPICE (1) are two widely used circuit simulation programs.
ASPECV and VAMOS (5) are respectively vector adaptations of these two simu-
lators. They demonstrate the substantial performance enhancements possible for
this class of algorithm on the CYBER 205. ASPECV is in use at ISD. VAMOS is in
daily production use at MOSTEK.

INTRODUCTION

Over the past decade, the design of integrated circuits has become increas-
ingly complex. Manufacturers who once had special purpose circuits of only a few
dozen components now have microprocessors and random access memory chips
constructed of thousands of devices. While early circuits were readily designed
and debugged by hand, the more complex circuits have necessitated computer
assistance.

During one phase of computer aided design, circuit simulation programs are
used. These programs are given circuit interconnection information (nodes) and
device characterizations (models). After establishing initial current and voltage
conditions at time zero, they simulate circuit operation by evaluating device con-
ductances and node voltages over small increments of time. Due to the rapid
response of microcircuitry to voltage changes, circuit simulation must often be
performed at timesteps of a few hundred picoseconds. This small timestep may
necessitate thousands of steps to simulate circuit performance for a given set of
initial inputs. Many such simulations (which may each require hours on an IBM
3081 or CDC 176) are required to thoroughly explore a circuit’s characteristics
over a wide range of temperatures and input sets.

71

The speed of a supercomputer is valuable to engineers designing such large
scale integrated (VLSI) circuits. These engineers are, however, unwilling to com-
promise simulation accuracy for speed. For this reason, various projects have
investigated vector computers (2) (3) (4) for use in the transient analysis of VLSI
circuits.

Two well-known and widely used circuit simulators are ASPEC, copyrighted
by Mr. Frank Jenkins, and SPICE, copyrighted by the Regents of the University of
California. ASPECV is the product of a technical team from the San Francisco
District of Control Data Corporation Professional Services Division. This team
spent approximately one man-year analyzing ASPEC in detail. Their effort
included extensive conversations with the program’s author and the rewriting of
select areas of code for enhanced performance.

The program VAMOS was developed by Steven D. Hamm and Steven R.
Beckerich of MOSTEK Corporation. VAMOS evolved from a simple installation of
SPICE2 into a program in which 80 percent of the analysis routine code is
vectorized. Many sections of code were radically changed due to the application
of algorithmic, rather than simple syntactic, vectorization.

ARCHITECTURAL CONSIDERATIONS

ASPEC AND SPICE were initially developed for a type of computer similar
to the Control Data Corporation 6400. Originally, the programs were designed to
handle circuits with fewer than 600 devices. Intentional minimization of memory
requirements increased central processor time. Many users modified ASPEC and
SPICE for use with large-scale circuits, extending the programs into areas far
beyond their design. When any design is so overextended, there are often
undesireable consequences. One obvious consequence was long running time on
circuits with more than 2,000 devices.

Optimum performance for both ASPEC and SPICE required retailoring pro-
gram design to fit the architecture of the CYBER 205. The Cyber 205 used has
two vector pipes, a 16 megabyte memory, and is capable of 200 million floating
point operations per second (Megaflops) on 64 bit operands. To maximize perfor-
mance, the characteristics of this hardware must be considered. Some major con-
siderations are:

1. The CYBER 205 defines a vector as contiguous memory locations. While
ASPEC has a compatible memory organization, SPICE2 linked list storage needs
re-organization.

2. The scalar functional units on the CYBER 205 are pipelined. Code that cannot
be vectorized can be optimized by taking advantage of inherent parallelism. Even
so, the performance of scalar code will probably be substantially less than the
theoretical maximum of 50 Magaflops.

72

3. The hardware can generate and use bit vectors, which are useful in vectorizing
loops containing conditional statements. These bit vectors aid in producing rou-
tines that have no scalar code and run at full vector speed.

4. The virtual memory of the CYBER 205 provides over 2 trillion words of user
memory space. Any program that repetitively uses more than the entire physical
memory may, however, generate a great amount of paging delay. This fact con-
strains the choice of algorithms, as a fast algorithm may require additional
memory.

PROGRAM DESIGN

Both ASPEC and SPICE perform their simulations by alternating modeling
routines with a current matrix solution routine. The modeling routines calculate
the new device conductances based on device operating points. There is one
model for each type of device, such as diodes, jfets, mosfets, and bi-polar tran-
sistors. One model must simulate many different operating modes and
consequently has many branches and special cases.

The matrix solution routine calculates branch currents based on the con-
ductances calculated by the modeling routines. From these currents new node
voltages are obtained. This routine uses sparse Gaussian Elimination techniques.
The time required by this routine grows very rapidly and non-linearly with circuit
complexity.

In SPICE, to best utilize the long vector capabilities of the CYBER 205,
an interface routine was written between the vectorized analysis routines and the
rest of SPICEB. This routine reorganized memory into contiguous vectors and
established new element pointers. ASPEC was similarly treated. The task was
less formidable as data was already in homogeneous arrays.

In both VAMOS and ASPECV, vectorization of device equations is done by
long vector operations with conditional stores for the results. All devices are
evaluated in all regions of operation and the results are masked together to form
composite result vectors. This technique avoids the data motion overhead charac-
teristic of other methods at a cost of extra operations in each region. For
VAMOS, the data given in Table 1 shows the tremendous advantage vectorization
provides. The small amount of scalar store code remaining in MOSFET
contributes 19.4 of the total 25.5 seconds.

ROUTINE SCALAR VAMOS RATIO

LOAD 19.9 1.8 11.1
DIODE 79.4 3.6 22.1
MOSFET 325.4 25.5 12.8

Table 1. VAMOS Routine Comparisons

73

In. VAMOS, the vector startup time required by the CYBER 205 caused the
rejection of a vectorized matrix solution method for subcircuits as used in the
program CLASSIE (2). Instead, effort was expended in scalar code optimization to
achieve maximum instruction overlap. As part of the preprocessing phase of the
program, the row-column lookup is performed once and the indices are stored in
an auxiliary array.

In addition to the VAMOS techniques, ASPECV’s routine EQNSOL detects
perfect alignment between rows in the matrix. As circuit size increases, the
number of such rows increases dramatically. Full row-length linked triads are
executed in this case.

PROGRAM PERFORMANCE

Table 2 illustrates a comparison between a scalar version and VAMOS. The
scalar version was already heavily optimized. The circuit tested contained 2256
mosfets, 1312 diodes, 1774 resistors and capacitors, and had 1429 equations with
98.9 percent matrix sparcity. Overall VAMOS performance was 3 times scalar,
with 4 times in transient analysis. VAMOS performed the analysis over 100 times
faster than a VAX-11/780.

ROUTINES SCALAR VAMOS

READIN 68.4 51.9
SETUP 34.7 22.7
DC SOLUTION 47.8 19.0
TRANSIENT 503.8 126.4
OUTPUT 5.6 5.6
TOTAL 660.3 225.9

Table 2. VAMOS Program Performance Comparison

Table 3 shows the characteristics of a series of flexible circuits which can
be made any size by repeating a basic circuit block. Resistors and capacitors are
also present but are irrelevant to modeling time. Table 4 gives execution time for
two processors running ASPEC, and the current version of ASPECV on the CYBER
205. It is projected that, with continued effort, for large circuits the CYBER 205
mosfet run times could be reduced by another factor of 2 to 3. Table 5 shows that
the time to model a given device decreases with increasing circuit size, a very
desireable characteristic for VLSI circuitry.

74

CIRCUIT DIODES MOSFETS

1 50 50
2 100 100
4 200 200
8 400 400

16 800 800
32 1600 1600

Table 3. Circuit Characteristics

CIRCUIT TIME UNIVAC
STEPS 1182

1 420 30
2 622 82
4 869 208
8 1658 697

16 1658 1421
32 1658 TOO BIG

Table 4; ASPEWASPECV Comparison

NODES MATRIX

30 119
54 220

102 470
182 860
358 1718
718 3473

CDC
176

CDC
205

6 3
16 6
42 15

141 40
301 76
TOO BIG 158

CIRCUIT AVERAGE TIME (micro-sets)
diode mosf et EFFECIENCY

1 9.7 2 7.1 E
4 5.8 28
8 5.2 26

E 4.7 4.5 25 24

Table 5. ASPECV Size/Efficiency

VECTOR

El
80
89
94
97

Since most circuit simulation runs produce a great deal of printed output,
current simulations using ASPECV spend the majority of their time in Fortran
I/O. As an example, one ASPECV circuit containing 1000 devices and 950 nodes
initially ran in 980 seconds on a UNIVAC 1182 and in 141 seconds on the CYBER
205. After optimizing everything but the diode and mosfet models, the same
circuit required 72 seconds on the 205. Of the 72 seconds, 39 were spent in the
models. ASPECV requires only 44 seconds to simulate the same circuit. Only 6.3
seconds are required in the models: 1.3 in diodes, 5.0 in mosfets. Although the
mosfet model is still several times slower than theoretically possible, further
effort would yield small returns indeed. The simulation mentioned spends over 66
percent of its time in Fortran I/O routines.

75

Program speedups of 3 to 4 were accomplished through vectorization.
Future work directed at vectorization of the remaining scalar code may result in a
similar speed increase. Fortran I/O provides an effective limit to maximum
attainable speed.

REFERENCES

1. L. W. Nagel, %lPICE2: A computer Program to Simulate Semiconductor
Circuits,” Memorandum No. ERL-M520, University of California, Berkeley, May
1975.

2. A. Vladimirescu and D. 0. Pederson, “Circuit Simulation on Vector Pro-
cessors,tt Proceedings, IEEE International Conference of Circuits and Computers,
New York, October 1982.

J. C. May, “A Device Clustering Algorithm for Vectorized Circuit
Simulaz*on It Proceedings IEEE International Symposium on Circuits and Systems,
Newport Bkach, Calif., M)ay 1983.

4. S. McGrogan and G. Tarsy, “Vector Enhancement of a Circuit Simulation
Program,” Proceedings, Symposium on CYBER 205 Applications, Colorado State
University, Fort Collins, Colo., August 1982.

5. S. D. Hamm and S. R. Beckerich, “VAMOS: Circuit Simulation Program
for a Vector Computer,” Technical Paper, MOSTEK Corporation, Carrollton,
Texas, August 1983.

76

VECTORIZED MONTE CARLO METHODS FOR
REACTOR LATTICE ANALYSIS

FORREST B. BROWN

KNOLLS ATOMIC POWER LABORATORY

SCHENECTADY, NEW YORK

VECTORIZED MONTE CARLO METHODS FOR REACTOR LATTICE ANALYSIS

F. B. Brown.
.Knol IS Atomic Power Laboratory

Schenectady, NY

This report details some of the new computational methods and equivalent math-
ematical representations of physics models used in the HCV code, a vectorized
continuous-energy Monte Carlo code.for use on the CYBER-205 computer. Whi le
the principal application of MCV is the neutronics analysis of repeating reac-
tor lattices, the new methods used in MCV should be generally useful for vec-
torizing Monte Carlo for other applications. For background, a brief overview
of the vector processing features of the CYBER-205 is included, followed by a
discussion of the fundamentals of Monte Carlo vectorization. The physics mod-
els used in the MCV vector ized Monte Car lo code are then summarized. The new
methods used in scattering analysis are presented along with details of
several key, highly specialized computational routines. Finally, speedups
relative to CDC-7600 scalar Monte Carlo are discussed.

introduction

Monte Carlo calculations fill a special and important need in reactor physics
analysis -- they represent “truth” against which approximate calculational
methods may be calibrated. The Monte Carlo method permits the exact modeling
of problem geometry, a highly accurate mathematical model for neutron inter-
actions with matter, and a cross section representation that is as accurate as
theory and measurement permit. The precision of Monte Carlo results is prima-
ri ly limited by the computing time required to reduce statistical
uncertainties.

Conventional (scalar) Monte Carlo codes simulate the complete history of a
single neutron by repeated tracking through problem geometry and by random
sampling from probability distributions that represent the collision physics.
The accumulation of data for l,OOO,OOO neutron histories will typically
require three to seven hours of CDC-7600 CPU time. On newer computers such as
the CYBER-205, scalar Monte Carlo codes may run one and one-half to two times
faster (with some tailoring of the coding) because of the reduced cycle time
and improved architecture of the scalar processors. Much larger gains are
possible when the vector processing hardware of the CYBER-205 is utilized.

The random nature of the Monte Carlo method seems to be at odds with the
demands of vector processing, where identical operations must be performed on
streams of contiguous data (vectors). Early known efforts to vectorite Monte
Carlo calculations for other vector computers were either unsuccessful or, at
best, achieved speedups on the order of seven to ten times for highly simpli-
fied problems. Recent results for honte,Carlo in multigroup shielding
applications and in continuous-energy reactor lattice analysis have demon-
strated that Monte Carlo can be successfully vectorized for the CYBER-205
computer. Speedups of twenty to fifty times faster than CDC-7600 scalar cal-
culations have been achieved without sacrificing the accuracy of standard
Monte Carlo methods. Speedups of this magnitude permit the analysis of
l,OOO,OOO neutron histories in only five to ten minutes of CPU time and thus
make the Monte Carlo method more accessible to reactor analysts.

79

General Considerations for Vectorized Monte Carlo

Conventional scalar Monte Carlo codes may be characterized as a collec
tion of random decision points separated by short and simple arithmetic.
Individual neutron histories are simulated, one at a time. The basic idea of
vectorized Honte Carlo is to follow many neutrons simultaneously through their
random wa 1 ks, using vector instructions to speed up the computation rates.
The many conditional branches (IF...GOTO), few DO-loops, and largely random
data retrieval embodied in conventional Honte Carlo codes preclude vectoriza-
tion through the use of automatic vectoriting software or by a syntactic
vectorization of coding. Instead, experience has shown that a comprehensive,
highly integrated approach is required. The major elements of such an
approach are as follows:

1. The entire cross section and geometry database must be restructured to
provide a unified data layout.

2. The entire Monte Carlo code must be restructured (rewritten).

3. Deliberate and careful code development is essential.

Clever programming and machine “tricks” alone will not ensure successful vec-
torization of a Monte Carlo code. The key to successful vectorization of
Monte Cario is that a well-defined structure must be imposed on both the data-
base and Monte Carlo algorithm before coding is attempted. This structure may
arise simply from the reorganization of existing data/algorithms or may entail
the development of special mathematics or physics. Careful and systematic
development helps to preserve the structure as the vectorized code becomes
more complex.

VectorFtation Techniques

The principal obstacle to vectorizing a conventional scalar Monte Carlo code
is the large number of IF-statements contained in the coding. Examination of
sections of coding shows that, typically, one-third of al I essential FORTRAN
statements may be IF-tests. Careful consideration of the Monte Carlo program
logic and underlying physics permits categorizing these IF-statements and
associating them with three general algorithmic features of Monte Carlo codes
-- implicit loops, conditional coding, and optional coding. lmpl ici t loops
are vectorized using shuffling, and conditional coding is vectorited using
selective operations. This approach to vectorizing Monte Carlo is effective
on the CYBER-205 and other vector computers having hardware capabilities for
vectorized data handi ing. In successful attempts to vectorize Monte Carlo
methods, 40 to 60% of ail vector instructions used in actual coding were vec-
tor data hand1 ing instructions (gather, compress, bit-control led operations,
etc.).

The data-handling operations associated with shuffling and selective oper-
ations in the vectorized code constitute extra work that is not necessary in a
scalar code. This extra work offsets some of the gain in speed achieved from
vector ization. For vectoritation to be successful, overhead from shuffling
and selective operations should comprise only a small fraction of total com-
puting time. It is thus essential that all data hand1 ing operations be
performed with vector instructions. Vector computers that must rely on scalar

80

data handling operations are severely limited in vectorized Monte Carlo per-
f ormance.

Conclusions

Continuous-energy Monte Carlo methods have been vectorized for the CYBER-205
and the speedups are large. Due to the drastic restructuring of the honte
Carlo coding and data base, the HCV code has been limited to the treatment of
repeating reactor lattice geometry. This restriction has been deliberate,
however, to permit an orderly and careful program of development. There are
no a priori limitations on the methods used in vectorization that would pre-
clude extension to more general applications. Profound changes in the methods
used for reactor physics analysis are anticipated now that l,OOO,OOO neutron
histories may be run in only five to ten minutes with the CYBER-205 vectorized
Monte Carlo vs. the three to seven hours that are typical for COC-7600 scalar
Monte Carlo.

References:
F. 8. Brown, “Vectorized Monte Carlo Methods for Reactor Lattice

Analysis,” KAPL-4163, Knol Is Atomic Power Laboratory (1982).
F. B. Brown, “Development of Vectorized Monte Carlo Methods for Reactor

Lattice Analysis,” Trans. Am. Nucl. Sot., 43, p.377 (1982).

81

VIBRATIONAL RELAXATION OF DIATOMIC MOLECULES
IN SOLIDS AT LOW TEMPERATURES

LAWRENCE L. HALCOMB
AND

DENNIS J. DIESTLER

DEPARTMENT OF CHEMISTRY
PURDUE UNIVERSITY

WEST LAFAYETTE, INDIANA

VIBRATIONAL RELAXATION OF DIATOMIC MOLECULES

IN SOLIDS AT LOW TEMPERATURES

Lawrence L. Halcomb* and Dennis J. Diestler

Department of Chemistry

Purdue University

West Lafayette, Indiana 47907

Prepared for delivery at the joint NASA/Goddard-CDC Symposium

on CYBER 205 Applications, Lanham, Maryland, October 11-12, 1983.

Abstract

A q iscroscopic dynamical treatment of chemical systems comprising both
light particles that require a quanta1 description and heavy ones that may be
described adequately by classical mechanics has recently been presented
[J. Chem. Phys. 78, 2240 (198311. The application of this “hemiquantal”
method to the specific problem of the vibrational relaxation of a diatomic
molecule embedded in a one-dimensional lattice is presented. The vectorization
of a CYBER 205 algorithm which integrates the 103-104 simultaneous
“hemiquantal” differential equations is examined with comments on opti-
mization. Results of the simulations are briefly discussed.

*
David Ross Fellow

85

I. Introduction

A microscopic dynamical description of a chemical system composed of both

light particles that require a quanta1 description and heavy ones that may be

described adequately by classical mechanics has been proposed recently [J.

Chem. Phys. 78, 2240 (198311. The description consists of a self-consistent

set of ’ ‘hemiqaantal’ ’ equations (HQE) arrived at by taking a partial classical

limit of Heisenberg’s equations of motion for the system. In form, the EQE

auuear to consist of Eeisenberg’s equations for the light particles coupled to

Eamilton’s equations for the heavy particles. The coupling is self-consistent

in that there is an instantaneous feedback between the light and heavy

subsystems, with total energy and probability of presence of the quanta1

subsystem being conserved.

This paper will focus on the numerical solution of the HQE on the CYBEE 205

for the special case of a diatomic molecule embedded in a cold, one-dimensional

lattice. In Section II, we detail the model and specific form of the HQE,

while the CYBER 205 algorithm and steps taken to optimize performance are

included in Section III. Results of the simulations and some discussion of

their physical significance are presented in Section IV.

II. Model and Equations of Motion

Figure 1 depicts the physical situation, i.e. a single diatomic molecule BC

occupying a substitutional site in an otherwise pure one-dimensional lattice of

atoms A; the end atoms of the lattice are assumed free. So that the normal

modes of the lattice are known analytically, the mass of BC is taken to be

equal to that of A. The heavy, classically behaving degrees of freedom are

considered to be the displacements (ui) of the lattice atoms, including the

86

center of ~SSS of BC, from their oqoilibriam positions. Tho internal vibration

(q) of BC is treated quantally aad, for eirplicity, as $ harmonic, two-state

systom. We assumo that only nearost-neighbor atoms intoract with one another:

A-A interactions aro harmonic; A-B and A-C interactions l ro approximated by

Morse potentials.

Under those conditions, the HQE take the form

.
cp

-1 = -ia [eici(t) + 1 Vij(~“kwI)cjwl

up = PiWrnA (1)

.
Pi(t) = - 5, lJ(Iuj(t)l)

i
+ 1 cjWckWF.. ((urn(t

1Jk
.

Jk

Hore ci is the occupation probability amplitodo for quanta1 state ii pi is the

momentum conjugate to u.;
1

U is the harmonic part of tho potential, i.e.

n-2 *1

U = i 1) (ui+l - Ui12 +) (ui+l - Ui121 #

i=l i=n+l

where N is the number of lattice atoms. F is the quanta1 force

(2)

defined by

F ijk = a-Vij/hk (3)

where

87

Vij(lukI) = CilV, + VAClj> ,

and the Morse potential VAB is explicitly

%B = DAB(expI-aAB(ua-un-l + L - y,q)l-11
2

(4)

(5)

with a similar expression for V
AC’

Since the ci are complex, the HQE consist of 2N+4 coupled first-order

ordinary differential equations. Given initial conditions appropriate to the

physical situation, we can integrate these numerically by standard techniques.

Our principal problem now is to develop and optimize an algorithm appropriate

to the CYBER 205.

III. CYBJZR 205 Algorithm

The HQE [Eqs. (l)] can be cast in terms of the vector differential equation

i = f(X(t)), defined by

.
x1(t) = fl(Xl’ XnL x1(O) = xy ,

.
.
x,(t) = fu(xl, x& x,(O) = x; .

The vector X can be written as

(6)

x= [C,U,Pl where, for example,

c = [Cl, c2, c3, c41 . (7)

88

-

From experience, we have found the HQE extremely well-behaved. Therefore, they

can be handled with a relatively simple differential equation solver. We

employ the familiar fourth-order Rungo-Kutta algorithm (RX41 which, for our

case, is summarized by the following equations:

K1 = T f (X1

K2 = T f(X + K,/2)

=3 = T f(X + K2/2) (8)

K4 = T f(X + K3)

X[(n+l)Tl = X(nT) + (K1+K4)/6 + (K2+K3)/3

where T is an appropriately chosen time step. Our choice of RK4 is guided by

several considerations; it is quite stable, self-starting and easily coded for

the CYBER 205. In addition, we need no direct method of estimating truncation

error since we can calculate total energy and probability of the system as a

check. Eventually , the RK4 algorithm will be used to calculate input values

for a more sophisticated predictor-corrector routine.

Since our simulations require widely varying amounts of memory, we would

like to assign storage at execution time. Clearly, the vector pipelines are

used more efficiently if the entire derivative vector is manipulated at once.

If we are to deal almost exclusively on the dynamic stack, we need a method of

parsing the vector X into subvectors C,U,P which can then be handled

independently. This “breaking up’ ’ is accomplished by building descriptors

using SHIFT and OR operations on an integer equivalenced to a descriptor which

points to an area in dynamic space. The subroutine BREAKLIP is presented in the

Appendix. This routine allows the RK4 mainline to allocate storage dynamically

while permitting the derivative routine to access each subvector individually.

89

We now concentrate on the vector fun&ion subprogram that calculates the

derivative f (X1. In our model, the four probability amplitudes must be

accessed individually each time the function is called. Rather than waste a

vector instruction to storo the sabvector C in a temporary array, it is faster

and more convenient to use the following sequence of hardware calls to load

them directly into registers:

ASSIGN TEMP, C

CALL QBLOD (TBMP,, Cl)

CALL Q8IX(TEMP, 64)

CALL QSLOD(TEMP,, CZ), etc.

The constants needed to calculate the potential and force functions -are

computed in advance and passed via labeled common. By roviewing an assembly

listing of the program, oao can minimize the number of loads necessary to
.

access those constants. The ovaluatioa of U is easily done by a vector

multiplication with a stored reciprocal mass.

i can be conveniently calculated by evaluating tho derivative of a fully

harmonic potent ial U’ . Thus wo have

- gu U’(iUjH
i

= k(-2ui+ui-l+ui+i) where

U 0 = u 1 ’ UN+1 = UN’

which can be effected by two vector additions and two vector multiplications as

follows:

90

-$$mljl) = UTEMP(l;N) = K*(-2.*UTRbR’(l;N) + UTlWP(O;N) + UTEMP(2;N))

whoro UTEMP is a temporary array sot to the current values of U. Finally, 6 is

obtained by replacing the n-l, n, and n+l elements of UTEMP by the proper

values reflecting the Morse potentials at the diatomic. To accomplish this, it

is necessary to access the five displacements (ui, i = n-2, n+2}. Altornative-

lY, descriptors could be built to define the necessary vectors on U and the

values stored in UTRMP. In this case, hardware calls would be required to set

the first and last elements of UTEMP, to access the five elements of U around

un, and to store values in the three middle positions.

The conservation of total energy and probability gives us two necessary

criteria to check the accuracy of the numerical solution. The total energy’ is

given by

E= UW]) + P*P/(2mA)

+ lco12eo + lol12e 1

+ lco12voo + 2Re{co+c)V 1 10 + “l’2Vll

while total probability is simply

P = Icol2 + lc112.

(10)

(11)

which must remain unity. These checks were made every 1000 iterations using

values calculated in the first pass through the derivative routine. To

calculate U’ [Eq. (911, the following code is used:

91

ASSIGN TRW, .DYN. N-l

TEMP= Q~VDELT(U;TEMP)

EU= (K/2) l Q8SDOT(TEMP,TEMP).

In Table I, sample iteration times and estimates of floating point

operations per second aro given. The timings are for loops without I/O or

accuracy checks. The results of several simulations are presented in the next

Section.

IV. Results of Simulations

Our simulations all take the diatomic to be in its excited state and the

lattice to be at OK initially. This means that all elements of X(0) are zero,

except the real component of cl(G), which is unity. The time stop size is ;Ol

2, where o is the transition frequency of the diatomic. The quantity of

principal 2 interest here is Ic,l , the probability of the diatomic being

excited. The physical constants for the system, which are chosen roughly to

mimic EC1 in Ar, are listed in Table 2. The only variable quantifies are w and

N. The transition frequency is chosen low in order to observe relaxation on

the time-scale of the simulation.

Figure 1 displays plots of 1~11~ versus time for a sampling of simulations.

Frames (a)-(c) demonstrate the effect of increasing the diatomic’s transition

frequency w, (cm -l) holding the number of lattice atoms fixed. It appears that

the rate of loss of energy from the diatomic increases with increasing

frequency up to a point. In fact, frame (c) suggests that the diatomic evolves

to a metastable state in which it loses no further energy. To. test this

hypothesis, we increased the number of lattice atoms to N = 2000. The result,

shown in frame (f), bears this notion out. For purposes of comparison, we

92

include a simulation for a smaller lattice (N = 200). Hero wo seo the of foot

of a pulse, which bounces back and forth, interfering with the monotonic

relaxation of the diatomic.

V. Conclusion

These simulations represent the first application of a now description of

the dynamics of chemical processes. Most previous approaches employ long-time

asymptotic approximations, in which the coupling between the subsystems is weak

and the decay is therefore very slow on the time scale of molecular motions

(lo-%). The advancement of ultrafast laser spectroscopy now allows chemists

to monitor directly fast relaxation processes (10-12s). In this regime, the

coupling is more signif icant, and accurately solving the equations of motion

becomes crucial. The HQE can be used for this purpose. However, any practical

implementation will require a vector processor, such as the CYBEB 205. Our

calculations would be essentially impossible on Par due University’s

6500/6500/6600 system, for exampl‘e. The calculations would take SO-100 times

longer, even if the storage for the vectors were available.

The main feature of our CYBER 205 algorithm is a mainline that assigns

storage at execution time. The vector function subprogram that evaluates the

derivative can access the subvectors individually while the mainline processes

the entire vector. This is accomplished by building the appropriate

descriptors using the BREAJLlJP subroutine (see Appendix).

Some preliminary results were presented in Section IV. Future research

will deal with the actual mechanism of energy exchange between the two

subsystems. Also planned are some N-state models with applications in surface

chemistry.

93

Acknowledgements

we would like to thank Purdue University for providing computer time on the

CYBER 205 and the Purdue Research Foundation for financial support of this

work. Also, we would like to thank Daniel Severance and the Purdue University

Computing Center User Services Group, especially David Seaman, for helpful

discussions.

94

Table I. Increase of calculation speed with increase

of number of equations

Equations Iteration Time Mega FLOPS

24 .157 ms 6.1

204 .204 ms 22.8

a04 .256 ms 37.9

2004 .671 ms 69.3

4004 1.19 ms 77.7

10004 2.75 ms 83.8

20003 5.37 ms 85.6

95

Table II. Parameters of model system

DAB

aAB

k

mB

9.25 I lo-l5 ergs
DAC

1 .a3 x 10’ CIII-~
aAC

a14 ergs/cm'
"A

1.67 x 1O-24 g
mC

=: 1.24 I 10 -14 ergs

= 1.66 -1 x 10' cm

= 6.64 x 1O-23 g

= 5.88 x 10’~~ g

96

C

C

C

C

C

C

C

C

C

C

C

C

C

100

Appendix

SUBROUTINE BREAKUP(X,NSUB,LENSUB,DESSUB,NDIM)

IMPLICIT INTEGER(A-Z)

BREARUP- TAXES ADESCRIPTOR (X) AND RANUFACTURES OTHER

DESCRIPTORS [DESSUB(N)] THAT POINT TO SUBVECTORS OF

LENGTHS LENSUB WHICH CORPRISE THE VECTOR POINTED

TO BY X

ARGUMENTS:

X- DESCRIPTOR To BE 'BROXEN UP'

NSUB- NUMBER OF SUBVECTORS

LENSUB- ARRAY CONTAINING THE SUBVECTGR LENGTHS

DESSUB- ARRAY CONTAINING THE RESULTING DESCRIPTORS

NDIM- DIMENSION OF LENSUB AND DESSUB

DESCRIPTOR D,X,DESSUB(NDIM)

DIMENSION LENSUB(NDIM)

EQUIVALENCE (D,DTERP)

ASSIGN D,X

ADD= SHIFT(SHIFT(DTEMP,16), -16)

DO 100 N=l,NSUB

LENG'lU= SHIFT(LENSUB()

DTEMP= OR(ADD,LENGTH)

ASSIGN DESSUB(N),D

ADD= ADD + 64*LENSUB(N)

CONTINUE

RETURN

END

97

t-4 Q
0 c A l -• A B C A -00 A 0

I I- U”-1 t-5” h”,I 1
1 n-l n n+l N

Figure 1. One-dimensional model of a substitutional diatomic
molecule BC in an othemise pure lattice of atoms A.

II

0. 1000. 2c

.aoo-

.a00 -

.')oo -

.200-

.000 --

(d)
N-200
w-30 cm-’

0. lOb0. 2t

3

(b)
N-1000
w- 20cr

(4
N-1000
w-30 cn-

3

Cc)
x=1000
w= 30cn

3. sm.
-
1c

(0
N=2000
w-30 erri

Figure 2. Plots of probability of finding diatomic in the excited
state versus time for a selection of simulations of the system defined
by parameters of Table 2. Time is in units of 0.18 picoseconds.

99

CHEMICAL APPLICATION OF DIFFUSION QUANTUM MONTE CARLO

PETER J. REYNOLDS
AND

WILLIAM A. LESTER, JR.

MATERIALS AND MOLECULAR RESEARCH DIVISION
LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA

I;
-

CHEMICAL APPLICATION OF DIFFUSION QUANTUM MONTE CARLO*

Peter J. Reynolds and William A. Lester, Jr.+
Materials and Molecular Research Division

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

The diffusion quantum Monte Carlo (QMC) method gives a stochastic

solution to the Schrodinger equation. This approach has recently been

receiving increasing attention in chemical applications as a result of

its high accuracy. However, reducing statistical uncertainty remains a

priority because chemical effects are often obtained as small differences

of large numbers. We give as an example the singlet-triplet splitting of

the energy of the methylene molecule CH2.

We have implemented the QMC algorithm on the Cyber 205, first as a

direct transcription of the algorithm running on our VAX 11/780, and

second by explicitly writing vector code for all loops longer than a

crossover length C*. We discuss the speed of the codes relative to one

another as a function of C*, and relative to the VAX. Since CH2 has

only eight electrons, most of the loops in this application are fairly

short. The longest inner loops run over the set of atomic basis

functions. We discuss the CPU time dependence obtained versus the number

of basis functions, and compare this with that obtained from traditional

quantum chemistry codes and that obtained from traditional computer

architectures. Finally, we discuss some pre1iminar.y work on restruc-

turing the algorithm to compute the separate Monte Carlo realizations in

parallel--potentially allowing vectors of unlimited length.

*This work was supported in part by the Director, Office of Energy
Research, Office of Basic Energy Sciences, Chemical Sciences Division of
the U. S. Department of Energy under Contract No. DE-AC03-76SF00098,
Director's Program Development Fund, Lawrence Berkeley Laboratory, and
the Control Data Corporation.

+Also Department of Chemistry, University of California, Berkeley,
California.

103

1. BACKGROUND

In recent years Monte Carlo methods have been increasingly

applied to quantum-mechanical problems. Quantum Monte Carlo (QMC)

methods fall into two major categories. Variational QMCI is a

method of evaluating expectation values of physical quantities with a

given (generally optimized) trial wave function YT. The procedure

in effect amounts to evaluating a ratio of two integrals, although

the actual Yonte Carlo procedure is generally more sophisticated.

The second major category of QMC is the "exact" type.* In these

latter approaches the SchrSdinger equation is actually "solved". It

is not necessary to already have a highly accurate wave function in

order to compute the expectation values. Properties of interest are

in effect "measured" as the system evolves under the Schr6dinger

equation. When a stationary state is obtained, averages of the

measured quantities give the desired expectation values.

Only recently have chemical calculations by exact QMC methods

been carried out. 394 We will discuss here one such QMC method --

the fixed-node, diffusion QMC -- which we have been using in cal-

culating molecular energies. In Section 2 we present the basic

theory. Section 3 describes the algorithm. The implementation of

this algorithm on the Cyber 205, its optimization, and results, are

discussed in Section 4.

104

4
2. BASIC THEORY

The SchrBdinger equation may be rewritten in imaginary time,

and with a constant shift in the zero of energy in the. following form:

“y;$‘t’ = [DO2 - ‘-‘(El + ET1 ‘U&t) l

Here D = a2/2me, R is the three-N dimensional coordinate vector

of the N electrons, and V(E) is the potential energy (the Coulomb

potential for a molecular system). Equation (1) is simply a

diffusion equation combined with a first-order rate process, and thus

may be readily simulated. The function Y(R-,t) plays the role of the

density of diffusing particles. These particles undergo branching

(exponential birth or death processes) according to the rate term

[ET - V(!gl ‘y@). Thus, the number of diffusers increases or

decreases at a given point in proportion to the density of diffusers

already there.

The steady-state solution to Eq. (1) is the ground-state

eigenfunction of the Schradinger equation. Furthermore, the value of

ET at which the population of diffusers is asymptotically constant

gives the energy eiqenvalue Eo. The lowest eigenstate, however, is

that of a 3ose system. In order to treat a Fermi system, such as a

molecule, we need to impose anti-symmetry on Y(E). A method which

does this, and at the same time allows us to sample more efficiently

(to reduce our statistical error), is importance sampling with an

105

anti-symmetrized importance function Y I' The zeros (nodes) of YI

become absorbing boundaries for the diffusion process, maintaining

the anti-symmetry. A simple form for YI which gives the necessary

anti-symmetry is a Slater determinant of molecular orbitals

multiplied by a symmetric function of the coordinates.

To implement importance sampling, one simply multiplies Eq. (1)

by YI and rewrites it in terms of a new probability density f(k,t)

given by

The resultant equation for f can be written as

af - = DV2f + [ET - E&R)]f - DV=[fFU(R)] .
at (3)

The local energy EL(R) and the "quantum force" FQ(R) are simple

functions of lu,(IJ). Eq. (3), like Eq. (l), is a generalized

diffusion equation, now with the addition of a drift term, due to the

effect of F Q’ It is Eq. (3) that we solve stochastically. Using a

Green's function approach, our diffusers are made to follqw a "random

walk" (Markov chain) in such a way that their asymptotic distribution

is given by the steady-state solution, f,(R), of Eq. (3). Properties

of interest (such as the energy) are measured during the "walks", and

are thus averages over the distribution f,(R).

106

3. ALGORITHM

We present here an outline of the algoritnm for performing

diffusion QMC. For more detail see Ref. 4. This algorithm is not

structured specifically for the architecture of the Cyber 205. We

will return to this point in the next section.

(0) Initialization. First generate an ensemble of NC

configurations of the N-electron system. Typically NC * 100-500.

These coordinates may be chosen randomly, or more efficiently from

the distribution This initial distribution is

f(l?, t=O).O

(1) Loop over blocks. In each block:

(2) Repeatedly loop over the ensemble until the time in each

configuration has reached the chosen target time. For each

member of the ensemble compute the inverse of the Slater

matrix. Then:

(3) Loop over the electrons. Compute FQ for the current

electron. IMove to

r' = r + DrF
Q+ x (4)

where T is the discrete time-step size, and x is a

3-dimensional Gaussian random variable with a mean of zero

107

and a variance of 2Dr. This corresponds to the diffusive

motion. If the electron crosses a node, eliminate the

configuration from the ensemble and continue loop (2) over

the ensemble. Otherwise update the Slater matrix and its

inverse, and continue loop (3).

After all electrons in the current configuration have been

moved, advance the time associated with this new configuration

R' by T. Calculate EL(R'). Also calculate the branching

factor, or multiplicity.

M = exp (--r{[EL(R) + EL(R')I/2 - ET))* (5)

Return M copies of this configuration to the ensemble. This

branching, or birth and death process, corresponds to the rate

term in Eq. (3). Weight all averages by M. Continue loop (2).

After all members of the ensemble have reached the target time, the

current block is finished. Use <EL> to update ET. Store <EL>

and the other averages. "Renormalize" the ensemble back to its

original size NC. (This is necessary because the population grows

or shrinks exponentially. Although we have endeavored to make the

exponent close to zero [cf Eq. (5)], asymptotically at large time tne

population will either vanish or overflow the allocated storage.)

Reset all averages to zero. Continue loop (1) for the desired number

of blocks.

(4) Average over blocks.

108

4. CYBER 205 IMPLEMENTATION.

The problem we chose to study is the singlet-triplet energy

splitting of the methylene molecule, CH2. CH2 is fairly typical

of the molecules we have been studying by QMC, in terms of the number

of electrons and the number of nuclei. As a result, most of the

inner loops in this application are quite short. The longest inner

loop runs over the set of atomic basis functions. With this in mind,

we present our results on the relative performance of the Cyber 205

and the VAX 11/730. To compare with the CDC 7600, we note that our

code runs almost exactly ten times

We have imp lemented the QMC a 1

by simply transcribing our working

The major impediment at this stage

faster on the 7600 than on the VAX.

gorithrn on the Cyber 205, initially

program from the VAX to the Cyber.

was the lack of unformatted I/O on

the Cyber and, even worse, its inability to handle logical records

longer than 137 bytes. After rewriting these portions of the code,

the program finally ran.

!Ilith automatic vectorization ooth on and off, the Cyber ran

approximately 16 times the speed of the VAX. Apparently, any

speed-up from vectorization of the longer loops was lost to the

start-up time for vectorizing the short loops. It seemed clear

explicit vectorization was required. Thus, as our next step, a

long inner loops of constant length were written explicitly in

that

11

vector

109

syntax, while short constant-length loops were left as 00 loops.

Most loops in the code, however, are of variable length. These were

all recoded in the form:

IF (length .GT. C*) THEN

[Vector code]

ELSE

[Scalar code]

END IF.

We present in Figure 1 our performance results as a function of

the crossover length C*. At values of C* greater than 26 the scalar

section of code is always being executed, and thus the curve flattens

out. For C* less tnan approximately 16, it appears that vector

start-up time hinders performance. The optimum crossover point

appears to be around 16. The lowest of the three curves corresponds

to the implementation described above. Subroutine calls are quite

costly on the Cyber 205. Thus in the middle curve we show the result

of removing two short subroutines (both written in IF-THEN-ELSE

form) and substituting vector code directly into the calling

110

programs. The speed-up is fairly dramatic, providing a peak speed of

close to 20 times the VAX (up from 17).

Interestingly, although the compliler recognizes that A**2 should

be replaced by A*A, inside of vector code A**2 calls the float-to-an-

integer-power routine. Needless to say, this is costly. Essentially,

changing one line of vector code from A **2 to A*A led to the improve-

ment shown in the top curve. Clearly the improvement is most

pronounced for small C*, where this line of code is being executed

more frequently.

As mentioned earlier, the longest inner loop is over the number

of atomic basis set functions, n. Traditional quantum chemistry

codes scale as n4 or n . 5 Thus increasing the size of the basis

set can be very costly. In our QMC approach, the algorithmic

dependence on n is linear. In Fig. 2 we plot the relative run times

as a function of basis set size on both the VAX (upper curve) and the

Cyber 205 (lower curve). Both curves are indeed fairly linear in n.

However, the slope for the Cyber is almost flat. This smaller slope

is due to an increase in the vector length rather than an increase in

the number of machine instructions being executed. The result is a

speed enhancement of 30 over the VAX (up from 20) by n=50.

Although a factor of 30 over the VAX (or equivalently a factor

of 3 over the 7600) is certainly good, it is nowhere near our hoped

111

for performance. This can be explained by the fact that even loops

of length 50 are relatively short on the Cyber 205. Possibly more

important, however, is that the relatively long inner loops constitute

only a fraction of the code being executed. Thus, truly high speed

for this kind of application requires on architectural rewrite of the

code.

Looking over the algorithm (cf Sect. 3) it is clear that the

entire structure is highly parallel. This is a fairly general

characteristic of Monte Carlo codes. Thus, on a parallel processor

the loop (1) over blocks can be eliminated, and each block can be

computed independently on a separate processor. There is no communi-

cation required between processors until the very end, when [step.(4)]

the average over blocks is computed.

For a truly efficient Cyber 205 algorithm, however, loop (1) is

too short to vectorize, generally ranging between 10 and 100. Loop

(2) is much more desirable to vectorize, with NC = 100-500. To do

so, this loop must be made innermost in the new algorithm. In other

words, the entire ensemble must be treated in parallel. Furthermore,

the vector length is dynam ic, since at each time-step the birth and

death process Imodifies the ensemble size. We are currently develop-

ing this fully vector code for future implementation. This code

appears to have great potential for fully exploiting the vector

capabilities of the 205.

112

Finally in Table 1, we present our results on the singlet-triplet

energy splitting of methylene, and compare these results with theory

and experiment.

5. ACKNOWLEDGMENTS

We would like to thank the Control Data Corporation for a grant

of computer time on the Cyber 205 at Colorado State University. We

also thank the Institute for Computational Studies at Colorado State

University and the Center for Advanced Vector Technology for their

orientation program and assistance. Finally, we thank Steve McGrogan

for many helpful comments on the code, and Robert Barnett for

preparing the figures.

REFERENCES

1. W. L. McMillan, Phys. Rev. 138, A442 (1965); 0. M. Ceperley,

G. V. Chester, and M. H. Kalos, Phys. Rev. B 16, 3081 (1377).

2. See for examole, M. H. Kalos, Phys. Rev. 128, 1791 (1962), and

M. H. Kalos, 0. Levesque, and L. Verlet, Phys. Rev. A 2, 2178 (1974).

3. J. 8. Anderson, J. Chem. Phys. 63 1499 (1975); 65, 4121 (1976); - 73,

3897 (1980); 74, 6307 (1981).

4. P. J. Reynolds, D. M. Ceperley, 3. J. Alder, and W. A. Lester, Jr.,

J. Chem. Phys. 77 5593 (1982). -'

113

TABLE 1,

The ground-state (3Bl) and first-excited state (lA1) energies of metnylene.

Method 3 B1-energy (hartrees) 1 Al-energy (hartrees)

Hartree-Fock -38.9348 -38.8944

CI-SD -39.1071 -39.0956

CI-SDQ (est.) -39.122 -39.105

QMC -39.129*0.004 -39.108*0.004

Experimental -39.148 ---

IAl - 3Bl energy (kcalbnole)

CI 9.3-11.3

Expt 8.5-19.6

QMC 12.3f3.4

114

RELRTIUE PERFORHANCE
CYBER RSS VS VAX ll/SSO

mA?Mw
Zl-

n-

u
1 I i I 1

Sk.AR-VECTOR CR:SSO”ER,=i*

1 1
50 u

Figure 1. F&lative speeds of the Cyber 205 and the VAX 11/780 for
quantum Monte Carlo calculations of the ground-state energy of CH2.
The crossover point C* is the vector length below which variable-
length loops are run in scaler mode. !rhus , for large C* these loops
are all run in scaler mode,whereas for very small C*, vector start-
up time hinders performance. The three curves correspond to differ-
ent degrees of hand-optimization of the code. See text for details.
Note that the curves interpolating the data points are simply poly-
nomial fits to the data. The actual curve for a particular molecule
is a set of steps at the values of the various loop lengths that
occur in the problem. The fits can be considered an "average"
behavior for this type of calculation.

115

CPU TIME vs VECTOR LENGTH

IHE (ARBITRCIRY IINITS)

Figure 2. CPU time versus the number of atomic basis set functions,
n. Conventional codes scale as nx with X ~44-6 while QMC scales
simply as n. Both the VAX and Cyber show this n dependence clearly.
However, the slope for the Cyber is almost zero. At n=16 the Cyber
is 20 times the speed of the VAX while at n=50 the Cyber is 30
times faster.

116

A HIGHLY OPTIMIZED VECTORIZED CODE FOR MONTE CARLO
SIMULATIONS OF SU(3) LATTICE GAUGE THEORIES

D. BARKAI
CONTROL DATA CORPORATION

INSTITUTE FOR COMPUTATIONAL STUDIES AT CSU
FORT COLLINS, COLORADO

K. J. M. MORIARTY
DEPARTMENT OF MATHEMATICS, STATISTICS

AND COMPUTING SCIENCE
DALHOUSIE UNIVERSITY

HALIFAX, NOVA SCOTIA, CANADA
AND

DEPARTMENT OF MATHEMATICS
ROYAL HOLLOWAY COLLEGE

ENGLEFIELD GREEN, SURREY, U.K.

AND

C. REBBI
DEPARTMENT OF PHYSICS

BROOKHAVEN NATIONAL LABORATORY
UPTON, NEW YORK

A Highly Optimized Vectorized Code for Monte

Carlo Simulations of SU(3) Lattice Gauge Theories*

D. Barkai
Control Data Corporation

at the
Institute for Computational Studies at CSU

P.O. Box 1852
Fort Collins, Colorado 80522

K.J.M. Moriarty
Department of Mathematics, Statistics

and Computing Science
Dalhousie University

Halifax, Nova Scotia B3H 4H8, Canada
and

Department of Mathematics
Royal Holloway College

Englefield Green, Surrey TW20 OEX, U.K.

and
C. Rebbi

Department of Physics
Brookhaven National Laboratory

Upton, New York 11973

Abstract

New methods are introduced for improving the performance of the

vectorized Monte Carlo SU(3) lattice gauge theory algorithm using the

CDC CYBER 205. Structure, algorithm and programming considerations are discussed.

The performance achieved for a 164 lattice on a 2-pipe system may be phrased

in terms of the link update time or overall MFLOPS rates. For 32-bit arithmetic

it is 36.3 usec/link for 8 hits per iteration (40.9 zsec for 10 hits) or

101.5 MFLOPS.

September 1983

Part of the submitted manuscript has been authored under contract
DE-AC02-76CH00016 with the U.S. Department of Energy. Accordingly, the
U.S. Government retains a nonexclusive royalty-free licence to publish or
reproduce the published form of this contribution, or allow others to do so,
for U.S. Government purposes.

*Talk presented at the International Conference "Parallel Computing 83" at
the Free University of Berlin, 26-28 September 1983 and at the Joint
NASA/Goddard-CDC Symposium on CYBER 205 Applications, held at Lanham,
Maryland, 11-12 October 1983.

119

1. Introduction

Many important results for quantum field theories in general and, in

particular, for the gauge theory of strong interactions known as Quantum

Chromodynamics (QCD) have been obtained by formulating the dynamics on a

space-time lattice. The lattice version of a quantized gauge field theory,

as proposed by Wilson Cl], has the properties of introducing an ultraviolet

cut-off independently of any perturbative expansion and of preserving

manifest gauge invariance. It permits a variety of investigations by

non-perturbative techniques, strong-coupling expansions [2] and Monte

Carlo (MC) simulations [3] being the most notable ones. Monte Carlo

simulations, indeed, have probably produced the most important results

for QCD, being able to probe the structure of the theory in the domain

where the transition between the strong-coupling behavior at large distances

and the asymptotically-free behavior at small separation takes place

Numerical methods must be used to explore the vary crucial domain

of intermediate couplings, since there are no known analytical techniques

for solving or even efficiently approximating gauge theories throughout

that region. On the other hand the fact that quantum fluctuations on

a finite lattice extending for n sites in four dimensions are given

by integrals of a dimensio

parameters in group space)

importance sampling, i.e.

possibility.

nality 4n4ng (rig is the number of independent

, which can easily exceed 2,000,000, leaves

Monte Carlo simulations, as the only calculational

Monte Carlo calculations are of a numerical nature, and quite

demanding on computational resources. The simulation of a system with

SU(3) gauge group (i.e. the system underlying QCD) on a lattice extending

for n sites in each of the four space-time dimensions requires storage

of 4n4 link variables, i.e. 4n4 SU(3) matrices, and the systematic

120

replacement, or "upgrading", of each of these matrices with new, updated

values, for several hundred or several thousand sweeps of the whole

lattice. One MC iteration is defined as a sweep of the lattice, i.e.,

one upgrade per link variable. A computation involving M MC iterations

thus implies 4Mn4 individual upgrades of SU(3) matrices. The upgrading

of each SU(3) matrix requires approximately 4,150 elementary arithmetic

operations and 180 table look-ups (if 10 attempts at changing the link

variable are made for each upgrade). For a lattice large enough for

obtaining physically meaningful results, the amount of computation needed

for a Monte Carlo simulation of QCD becomes extremely high.

Because of the aforementioned difficulties, Monte Carlo simulations

of QCD have been generally limited to lattices of rather small extent,

a lattice of 84 sites already representing a large lattice with respect

to the scale of most calculations. On the other hand, with the progress

in the field, it has become apparent that one must definitely analyze

larger systems to develop confidence in the numerical results. This need

may be understood on physical grounds. If 2 GeV is considered as a

universal energy for the effects of asymptotic freedom to begin manifesting

themselves, one would like the lattice spacing to be smaller than (2GeV)-'

(and the corresponding ultraviolet cut-off larger than 2GeV) i.e. smaller

than O.lfm. Conversely, if the goal of the computations is to determine

hadronic structure, the extent of the lattice should be larger than the

typical size of a hadron. Taking this size to be (minimally) 1 fm,

it becomes apparent that the parameter n ought to be larger, if possible

substantially larger, than 10. With, e.g., n = 16 and M : 1000 the

calculation of a MC simulation requires more than 10 12 operations not a

small task even for the largest machines currently available.

121

lllllllllllI! I! I II I Ill II I I Ill I I l1mllllllllllllllllllllllllllll

The number of the data elements involved, and the amount of

computations needed for manipulating this data, makes it worth while

to investigate ways for vectoritation of the code.

The purpose of this article is to illustrate the vectorization and

implementation on the CDC CYBER 205 of a code for Monte Carlo simulations

of the.SU(3) lattice gauge theory. (For previous implementations of

vectorized code see Ref.4.) As will be discussed in more detail in

the final section of this paper, the characteristics and performance are

such that 1 MC iteration of a 164 lattice can be done in 10.72 seconds

(corresponding to an upgrade time of 40.9 usec per SU(3) link variable).

Thus, 164 and larger lattices can be considered for meaningful

simulations of QCD. While we describe in this article the program for

the basic Monte Carlo algorithm, we are currently using it, together

with other vectorized codes, for a reevaluation on a large lattice, of

several quantities of theoretical and phenomenological interest in QCD.

The results of these investigations will be presented separately [S].

Here we proceed with a description of the computational algorithm and

an outline of its vectorization in Sect. 2, with a more detailed

account of the program in Sect. 3 and a summary of performance data in

Sect. 4.

2. The Monte Carlo Algorithm

We consider a hypercubical lattice of ns sites in each of the

three spatial directions and nt sites in the temporal one. The

dynamical variables of the SU(3) gauge theory are 3x3 unitary-

unimodular complex matrices, which are associated with the 4nlnt links

of the lattice. We denote by Vi the matrix associated with the

122

oriented link coming out of the lattice site of (integer) coordinates

X E (Xl sX~,X~SX~) in the direction u (u=l,2,3,4). The goal of the

Monte Carlo algorithm is to produce a stochastic sequence of configurations

of the system C(i), (a configuration being defined as the collection

of all Ug), such that the probability P(C) of encountering any

configuration C in the sequence approaches, after a reasonable

equilibriation time, the distribution

P(C) J exp{-S(C)3 , (2.1)

where S is the action of the configuration C in that sequence. S

is given by a sum over plaquette variables p , a plaquette being an

oriented square of the lattice defined by the origin x and two directions

lJ and v :

5 = x.5
Pp

= 6 z(1
P

- f Re Tr Up) ,

where

(2.2)

(2.3)

3 is the coupling parameter and z ,G stand for unit lattice

vectors in the L and ‘J directions, respectively. When Eqn. 2.1 is satisfied,

quantum mechanical expectation values of observables e, defined rigorously

as averages over all possible configurations, namely

123

<6; = z -1
I

TI dU;) u(U)exp[-S(U)]
X,!J

(2.4)

with

Z = '(II Ui)exp[-S(U)] ,
1

(2.5)
X,lJ

can be approximated by averages taken over the configurations generated

by the Monte Carlo algorithm:

6'(C(')) . (2.6)

NO represents the number of initial configurations discarded in order

to allow for the stochastic sequence to reach equilibrium.

In our code we implement the MC algorithm following the method of

Metropol

replaced

s et al [6]. Each individual dynamical variable Ui is

by a new one uz" x according to the following procedure:

candidate matrix Ui' is obtained from Ui by group multiplication:

U,"' = RkU; ,

i) a net

where Rk is an W(3) matrix randomly selected from a prepared set

CR, , . . . , RF11 of M matrices, to be discussed later.

124

ii)' the change in action, AS induced by the variation IJF + Ui '

is calculated:

AS = s(u;’ ,.. .)-s(u; ,...); (2.7)

iii) a pseudorandom number r with uniform distribution between 0

and 1 is generated and

;uQjJ . if
X

x r < exp(-AS) ,

$J = uu otherwise.
X X

The steps i) to iii) define what is ca ,lled a "hit" on one of the

variables. These steps are repeated Nh (number of hits) times.

link

This

completes the upgrading of one (link) variable UF . One MC iteration

(or one sweep of the lattice) is executed when all the variables have

been processed in this manner.

A crucial consideration for the whole algorithm and also for its

vectorization is that the calculation of the variation of the action

AS involves only a few of the dynamical variables apart from Ui

itself, namely those defined on the remaining links of the six

plaquettes which share the link between x and x+c . It is

convenient to be slightly detailed at this point and to introduce some

terminology. Given the link from x to x+G there are three

"forward" plaquettes incident on it, namely those with vertices

LI ,. A A
x, x+-i, X+!l+‘J and x+v ,

125

(v taking the three values # u) and three "backward" plaquettes,

namely those with vertices

h
x, x+lJ, x+1;-; and x-G ,

(see Fig. 1).

We shall define as the "force" acting on Ui the sum of the expressions

Fuv = Uu+A Uu A Uv
f,x x+!J x+LJ x

(corresponding to the forward plaquettes) and

pJ vt

b ,x = u;+;-;";-;ux-;

(corresponding to the backward plaquettes) over the three values of

VflJ

(2.8)

(2.9)

(2.10)

One can easily convince oneself that of the terms contributing to the

action in Eqn. 2.2 all those containing UF can be written in the form

BL.1 - f ReTr(Fg*Uz)] , (2.11)

and therefore

126

As = - 4 ReTr[Fit(Ui'- Ui)] . (2.12)

Thus, we become aware of two fundamental facts:

i) once the force FI is calculated, the Nh subsequent hits on

the link variable Uy can be done without any further recourse to the

values of other U variables.

ii) several upgradings can be done in parallel, provided only that the

forces Fi required for the computation do not involve any of the IJZ

variables that are simultaneously upgraded.

While point i) is relevant for any MC simulation, point ii) acquires

particular importance if one wants to write a vectorized code. Indeed,

as we shall show, all Us: variables with fixed u can be separated into

two sets such that the forces for one set only involve elements of the other.

Then, all the Ut variables belonging to one set can be grouped together

in an array and upgraded simultaneously. Finally one proceeds to upgrade

the elements of the other set (the red-black or checkerboard algorithm

[4]). We will see in the next section that the ability to separate

the link variables into two independent sets is a key to efficient vector-

ization.

3. The Vectorized Implementation of the Algorithm

The previous discussion has demonstrated that Monte Carlo lattice

gauge theories are worthy candidates for vector processing. Until recently,

however, people were doubtful as to whether the vector capabilities of current

127

supercomputers can be effectively utilized for such applications. The

main source for this skepticism is the inherent conflict between random

access to data, an integral part of a Monte Carlo process, and the strict

order of data elements required for pipelined computations. In other words,

unless data can be "gathered" at rates comparable to computation rates no

efficient vectorization can be achieved.

One of the major strengths of the CDC CYBER 205, and what makes it

a particularly powerful Monte Carlo machine, is the ability to order a

random collection of data by means of a vector instruction, namely, the

"Gather" instruction. This instruction is equivalent to a series of

random, or, indirect "load" operations on a serial computer. The

Gather instruction uses a vector of integers as an "index-list"

pointing to the elements to be fetched. These elements are stored

in the order they have been encountered into an output vector. The

result rate for the Gather operation is one element every 1.25

cycles (a cycle, or clock-period on the CDC CYBER 205 is 20 nanoseconds).

For a comparison, note that the floating-point arithmetic rate, excluding

division, is one element every cycle per pipe for 64-bit operands. The

CYBER 205 hardware also supports 32-bit operations with twice the

result rate for vector floating-point operations. For example, on a

two pipe machine 32-bit arithmetic is performed at a rate of 5 nsec

per result, or 200 MFLOPS.

The effective utilization of the computational tools build into

the vector processor is closely related to the data structure, as are

most of the important algorithmic decisions. It is, therefore,

appropriate, at this point, to discuss the memory requirements. A

3x3 complex matrix is represented by 18 real numbers. The constraints

128

of being unitary and unimodular reduce the number of independent para-

meters to 8, but such a minimal representation of the Ut variables

implies a substantial increase in the computational complexity. To obtain

optimal performance it is useful to keep all the 18 values representing

the real and imaginary parts of the elements of IJ: . For a lattice

with ns = nt = 16 a configuration will be defined by 18 x 4 x 164 =

4.718592 million values, which may be more than can be put in the fast

memory of many computer systems. Fortunately, the sequential nature of

the MC algorithm suggests that only a fraction of the variables need

to be in memory at any one time. The others can be kept on disk.

The factors which determine an optimal size for the partition between

variables in memory and on disk are the following:

i) the partition should not make the code unnecessarily complicated;

ii) the I/O operations should not take longer than the actual computations;

iii)sufficiently long vectors should be available.

On the basis of the above requirements we decided to upgrade one

space at a time, i.e. to upgrade all the 4nz variables UI with fixed

time coordinate x4 , and then to proceed to the next x4 etc. We

shall refer to this procedure as time-slicing and to the collection of

variables with fixed time coordinate x4 as one time-slice of the system.

If the variables with a given x4 = t are being upgraded, the

calculation of the force requires knowledge of the Ui with x4 = t-l,

x4 = t and x4 = t+l . Thus 3 time slices need to be in memory

throughout this stage of the calculation. As a matter of fact, since

I/O operations can proceed independently from CPU operations, it

129

is possible to achieve concurrency of I/O and CPU operations if

extra memory buffer space is allocated for holding the x4 = t-2 slice

(to be written out), and the x4 = t+2 slice (to be read in). The

conventional way of implementing concurrent I/O is to allocate space

for two more slices. The resulting five slices in memory act as a

circular buffer as shown in Fig. 2. However, the virtual memory hardware

on the CDC CYBER 205, and the supporting software provide the capability

to swap data between disk and memory. Hence, the memory area of one

slice only is needed to write out the x4 = t-2 slice, and read in

the x4 = t+2 slice. Consequently, the total memory requirements for

the link variables are thus 4 x n: x 4 x 18 locations. Allowing for some

additional work-space we find that lattices with ns = 16 can be

considered in a machine with 2m words (16m bytes) in full precision

(64-bit words) and ns = 20 in half precision (32-bit words). The length

in time does not constitute a problem any longer and lattices with any nt

may be simulated.

With the slicing mechanism in place we now turn to vectorization

aspects of the code. In Sec. 2, the Red-Black ordering was introduced.

The motivation for this choice merits some discussion. The computation

involves, mainly, matrix multiplications. This operation is easily

vectorized, but the matrices concerned are 3x3 matrices, and the resulting

vectors are going to be 3 elements long. For efficiently vectorized code

one needs to seek longer vectors. This results from the observation

that the timing formula for a vector instruction may be written as

(Start-up + 3-N) cycles (3.1)

130

where the start-up time is a constant, independent of the vector length.

It amounts to aligning the input and output streams, filling up the

pipelines up to the point where the first result is available and storing

the last result. The start-up time is also independent of the number of

pipe1 ines and whether 64-bit or 32-bit arithmetic is performed. On the

CDC CYBER 205 it amounts to about 50 cycles, or 1 gsec. The “a.N” term

is known as the "stream time". N is the number of elements in the vector,

so that the stream time is proportional to the vector length. a is a

constant associated with the number of pipelines and the arithmetic mode.

Table 3.1 contains the a values for some relevant circumstances.

It is now obvious that high performance is achieved by minimizing the number

of "start-ups" as a consequence of using longer vectors, or, increasing

N for each vector operation.

The SU(3) matrices are too small as an object for vectorization;

however, there are nl such matrices in every time slice. One cannot

use all of these link values simultaneously because -

i) updating each link requires all its irrrnediate neighbors, and

ii) the correct convergence of the Metropolis process depends upon

using "new" values as soon as they are available.

The Red-Black (checker-board) ordering resolves this apparent recursive

relationship. The separation of the Ui variables into two sets, for

each value of u and at fixed x4 , is achieved by putting in the two

sets all the variables belonging to links originating from odd and even

sites, respectively, i.e. with x1 + x2 + x3 = 1 or 0 (mod 2). This

assures the independence of the forces FE from the variables Ut being

upgraded. On a lattice with ns = 16 the above separation gives a vector

length of ni/2 = 2048, sufficiently large to insure almost optimal

131

performance (in fact, 91% and 95% in 32-bit and 64-bit arithmetic,

respectively). The calculation of the force FI requires knowledge

of the Ui variables associated with links neighboring the one under

consideration. Because of boundary conditions , which we take to be periodic,

the variables which enter the calculation of FE will not, in general,

have a simple location-index relative to UI in the array of dimension

nz/2 . This is easily remedied by the introduction of auxiliary

integer-valued arrays, where the indices of the various neighbors of

Uu
X

are prestored. The Gather instruction plays a crucial role in the

way these index arrays are used. When Fi is evaluated, all the

needed variables are gathered into temporary arrays, so that the indices

of all elements entering into the computation of FF are the same, and

this proceeds in a fully vectorized manner.

Once,the Fy's are determined the algorithm for the upgrading

of all the U';: (in the same set) is straightforward and completely

vectorizable. The matrices R which are used for finding the new

candidates IJY' , are Gathered according to an array of indices extracted

at random from a table. The table contains M SU(3) matrices which have

a distribution centered around the identity of the group and are obtained

in the following fashion. For each value of i between 1 and M/2

(M must be even) an eight component vector Vk with approximately

gaussian distribution and <VE> = 1 is pseodoramdomly generated. The

fourth-order approximation to Ri is given by

R" -
2 4

i-
ltiA-$-$+&

(3.2)

132

where

A = b ii VkXk * (3.3)

'k are Gell-Mann's matrices (i.e., a set of generators of the Lie

algebra of SU(3)) and b is a real parameter specifying the spread

of the distribution. The final value for Ri is obtained by normalizing

R0 i to a unitary-unimodular matrix. In general, if we denote the

three columns of an SU(3) matrix by y1,F2 and "; the constraint

of being unitary and uni modular is expressed by

I2 = \";I2 = 1 IF1

2
rl . ;* = 0 2

and

ith the first two co Given a matrix R" w

-0-o
rlxr2 # 0 , we shall

R with columns

define as the nor-ma

and

= (+r2)* .

-0 lumns rl 4 and r2 , with

lized form of R" the matrix

r /I- JO2
1 = q/ ,rl I

(3.4)

(3.5)

133

The reason for the nonmenclature is due to the fact that, if R" differs

slightly from a unitary-unimodular matrix, e.g. as a consequence of

roundoff errors, then R is an SU(3) matrix close in value to R0

imodular matrix R0
i obtained by Thus, the approximately unitary-un

truncated exponentiation in Eqn. 3

matrix Ri by normalization. The

.2 is converted to a proper SU(3)

last M/2 matrices are obtained by

(3.6)

so as to insure that, together with any given matrix Ri , the inverse

should also belong to the table.

The procedure for normalizing the SU(3) matrices of the random

table, as described above, is also applied, every few iterations, to the

link matrices. This is done to insure that the group symmetry of the

matrices is preserved regardless of rounding errors which may be

introduced by the hardware after many arithmetic operations. This

renormalization process is particularly important when the computations

are performed using low precision arithmetic. It gives us confidence, which

was also tested and verified, in using 32-bit arithmetic for our calcul-

ations on the CDC CYBER 205.

Once UF' is determined, using the table of random SU(3)

matrices, the action difference is obtained by calculating, separately,

ReTr(FzLUz) and ReTr(Fi;UE')

(notice that ReTr(A'B) is the vector product of the arrays containing

134

the real and imaginary parts of A and B) , forming an array with

exp[-AS) , comparing with an array of pseudorandom numbers and

accepting or rejecting the change, via a masking operation, according

to the outcome of the vectorized comparison between the random numbers

and the exponentiated action differences. These steps are repeated

for a prefixed number of hits before commencing the upgrade of the other

set or the variables corresponding to different directions.

The conditional acceptance of elements in a vector, or, the masking

operation referred to above, is handled through the usage of a "bit-vector"

(the CDC CYBER 205 is bit addressable and the software allotis the Fortran

user to use this feature). It is exploited as a part of the vector

instruction, and inhibits storing results where zeros are encountered-

in the bit-vector.

The reader should by now realize that many thousands of random

numbers are required for each iteration. The conventional congruent

method for generating random numbers is recursive, and may be described

by

yi+l = (asyi)mod(b) (3.7)

where a is the "multiplier" and b is determined so as yi+l will

be approximately the lower half of the coefficient of the product a.yi

The nature of this calculation suggests that in order to produce N

random numbers one has to repeat it serially N times. There is,

however, a way to reproduce the same sequence of N numbers in

parallel, using vector instructions [7]. Define a new multiplier by

135

I Ill IllI II Ill II lll-~IllIIlllllllllIIlllllllll

A = (aN)mod(b)

= (...(a*a)mod(b)*a)mod(b)...*a)mod(b)

and let

11 = (yl+‘“*‘YN)

be the vector containing the first N random numbers.

Then

lit1 = (A*li)mod(b)

(3.8)

(3.9)

(3.10)

reproduces the same sequence of random numbers one gets with a

repeated application of Eqn. 3.7 (the computation of Eqn. 3.10 requires

only 3 vector operations on the CDC CYBER 205).

To conclude this section, let us discuss the way matrix multiplication

is done, being the most time-consuming aspect of the computation . First,

the reader will remember that we do not vectorize the matrix multiplication

as such, but, rather, perform the operations on many matrices in parallel,

where for each matrix the "scalar" sequence of operations is followed.

When computing the products of two SU(3) matrices, one need not

evaluate all the columns of the result, since the third column of the

product matrix (which is again unitary-unimodular) is related to the

first two by Eqn. 3.4. In the code we have exploited this fact whenever

possible. It is particularly advantageous when several SU(3) matrices

must be multiplied together, since one may limit the calculations to

two columns out of three in all intermediate products and simply

reconstruct the third column of the final result as shown in Eqn. 3.4.

136

Finally, all complex arithmetic has been done in terms of real

variables, separating real and imaginary parts (which would also

result in a more efficient code for a scalar machine), and we have

used the identity

(A+iB)(C+i D) = (A+B)(C-0)-BC + AD + i(BC+AD) (3.11)

to perform the product of two complex matrices in terms of three real

multiplications and five real matrix additions. Using complex

arithmetic the product of two matrices would require four real

multiplications and two additions. Due to the fact that matrix

multiplication requires 2N 3 operations, where N is the dimension

of the matrix, and matrix addition requires only N' operations, our

method pays off even for N = 3 .

A schematic outline of the flow of the calculations is shown

in Fig. 3.

4. Performance and Timings

The figures quoted here are based on runs executed on a two-pipe,

2m 64-bit words CDC CYBER 205. They apply to a 164 lattice (ns = 16, nt = 16),

SU(3) gauge theory with 10 hits per link upgrade (unless stated explicitly

otherwise). We present performance figures for both 64-bit and 32-bit

arithmetic operations. In both modes the exponentiation and the generation

of random numbers were carried out using 64-bit arithmetic. It should be

noted here that due to our slicing .mechanism the 32-bit version requires

real memory of only 852,000 words (64-bit words, or 6.8m bytes), so it

actually fits comfortably on a lm words system. With these parameters

137

the code performs at 98% CPU utilization. The 64-bit version requires,

of course, twice as much memory.

In Table 4.1 we give the percentage of the execution time for the

two arithmetic modes spent in the force (FE) and the Metropolis

updating calculations. It becomes clear from these figures why it is

worth while using a single force computation for a number of attempts at

updating (rather than the one attempt proposed by the original Metropolis

method).

It should be added here the normalization procedure discussed in

Sec. 3, performed every 5 iterations adds only 0.74% and 0.59% in

64-bit and 32-bit modes, respectively, to the total execution time.

Table 4.2 presents a percentage breakdown of the code by operation

We. The reader will notice that the Gather, random number generation

and the exponentiation operations are more heavily weighted in the 32-bit

mode compared with that of the 64-bit mode. These three types of

operations perform at the same rate in both modes. The last two

execute in 64-bit mode in both versions of the code. The Gather instruction

performs at the same rate regardless of whether the operands are 64-bit

or 32-bit variables. This is because the performance of the Gather

operation is driven by memory access (and not by computation complexity).

The matrix multiplication, being made up of floating-point operations

only, executes at near peak rate of 95 MFLOPS and 182 MFLOPS for the

64-bit and 32-bit modes,respectively. The effect of vectorizing the

random number generator can be illustrated by noting that this operation

amounted to 6% (64-bit) and 11:; (32-bit) of the total time when it was

not vectorized. The "action" involves taking the real part of the

trace of products of SU(3) matrices (purely floating-point operations).

The "acceptance" is the portion of the code where the conditional acceptance

138

of new UE matrices occurs under the control of a bit-vector

created for that purpose.

The actual time for one iteration of the 164 lattice

with 10 hits is 16.27 sets. (64-bit) and 10.72 sets. (32-bit). This

amounts to a substained performance rate of 66.8 MFLOPS (64-bit) and

101.5 MFLOPS (32-bit). Another way, commonly used by physicists, to

express the performance of Monte Carlo lattice gauge theories implemented

on a computer system, is the link update time, i.e., the time needed

to update one link of the lattice once. This measure is useful for

comparisons since it is independent of the lattice size. The link

update times (in usecs.) for our implementation are given in Table 4.3.

These figures may be compared to a link update time of about 1,100

usecs on the CDC 7600 computer system with a highly optimized code.

Acknowledgements

We would like to thank Control Data Corporation for awarding time

on the CDC CYBER 205 at the Institute for Computational Studies at

Colorado State University where the code described in the text was

developed. One of the authors (K.J.M.M.) would like to thank Dalhousie

University for the award of a Visiting Fellowship which made his visit

to Fort Collins, Colorado possible. This research was also carried out

in part under the auspices of the US Department of Energy under contract

No. DE-AC02-76CH00016.

139

Table 3.1. Stream rate proportionality factor (a) .

2 l/2 l/4
4 l/4 7/8

Table 4.1. Breakdown by percentage of sections
of code.

I

64-bit ! 32-bit I

force

ioaate

I
43.49

I (

I
42.46 I

I
56.40 : 57.40

Table 4.2. Breakdown by percentage of the main operation
types.

operation type 64-bit

matrix multiplication 58.33 47.05

Gather 20.78 29.27

random number generator 0.95 1.83

exponentiation 7.43 11.72

action 5.93 4.70

acceptance 3.62 3.01

32-bit
I

Table 4.3. The upgrades times for a link (in vsecs).

number of hits '64-bit 32-bit

10 62.1 40.9

8 55.1 36.3

140

UP X

G
UX-C

x+;+;:

Uf;+$

x+;

v’,+;-t

x+;L-h,

Figure 1. "Forward" (upper half) and
"backward" (lower-half) plaquettes in the
P-V plane, where x 5 (x1,x2,x3,x41 is a

point in our four-dimensional lattice.
This is one out of three such planes which
can be formed in a four-dimensional space.

141

“SLICES”

ON DISK

I If unction

1 IN MEMORY

CIRCULAR

BUFFER

Figure 2. The I/O scheme. In our implementation the "in" and "out" boxes
occupy the same physical memory.

FLOW CHART
new iteration I

NEW TABLE
new time-slice

INITIATE PAGING
I “colors”/directions (8 1
I

“FORCE” MATRICES

METROPOLIS UPGRADING
Random Gather from Table
Matrix Multiply-“new”action
Weight Factor (exponential)
Acceptance Test:

Random-rbi t vector-update

1 RENORMALIZE 1
1 (every 5 iterations) 1

I I

Figure 3. Schematic description of the computational
process.

143

References

[l] K.G. Wilson, Phys. Rev. m, 2445 (1974).

[Z] J.-M. Drouffe and J.-B. Zuber, Phys. Reports (to be published).

[3] M. Creutz, L. Jacobs and C. Rebbi, Phys. Reports 95, ZOl(1983).

[4] D. Barkai and K.J.M. Moriarty, Comput. Phys. Commun. 25, 57(1982);
26, 477(1982); 27, 105(1982); D. Barkai, M. Creutz and K.J.M. Moriarty,
Emput. Phys. CorrPTlun. 30, 13(1983). -

[5] D. Barkai, K.J.M. Moriarty and C. Rebbi, (to be published).

[6] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller
and E. Teller, J. Chem. Phys. 21, 1087(1953).

[7] Forrest Brown, private communication.

144

ADAPTING ITERATIVE ALGORITHMS FOR SOLVING LARGE
SPARSE LINEAR SYSTEMS FOR EFFICIENT

USE ON THE CDC CYBER 205

DAVID R. KINCAID
AND

DAVID M. YOUNG

CENTER FOR NUMERICAL ANALYSIS
UNIVERSITY OF TEXAS AT AUSTIN

AUSTIN, TEXAS

ADAPTING ITERATIVE ALGORITHMS
FOR SOLVING LARGE SPARSE LINEAR SYSTEMS
FOR EFFICIENT USE ON THE CDC CYBER 205

David R. Kincaid
David M. Young

Center for Numerical Analysis
University of Texas at Austin

Austin, TX 78712

* Adapting and designing mathematical software to achieve
optimum performance on the CYRER 205 will be discussed

* Comments and observations are made in light of recent work
done at the Center for Numerical Analysis on

- modifying the ITPACK software package

- writing new software for vector supercomputers

147

Research goal - develop very efficient vector algorithms and
software for solving large sparse linear systems
using iterative methods

(older) SCALAR APPROACH - develop algorithms that minimize
either number of iterations or arithmetic operations

* Not necessarily the correct approach for vector computers *

(newer) VECTOR APPROACH - avoid operations such as table
lookups, indirect addressing, etc. that are inefficient on a
vector computer, i.e., non-vectorizable

* Fully vectorizable code may involve more arithmetic operations
but can be executed at a very high rate of speed *

* Advances in high performance computers and in computer
architecture necessitates additional research in mathematical
software to find suitable algorithms for the supercomputers of
today and of the future *

148

THE VECTORIZATION OF THE ITPACK SOFTWARE PACKAGE

Scalar ITPACK:

package for solving large sparse linear systems
7 iterative algorithms available
sparse storage format used
Kincaid, Respess, Young, & Grimes [1982]
ITPACK 2C (ALGORITHM 586) in T.O.M.S.
"Transactions on Mathematical Software"

VECTORIZATION:

- First step: look for obvious vectorization changes since this
was a large package of over 11,000 lines of code and we did not
want to completely rewrite it

- Vector ITPACK (standard Fortran version): used a minimum of
vector syntax available in CYBER 200 Fortran for a portable
version of Vector ITPACK 2C

- Vector ITPACK (CYHER 205 version): a modified version of
Vector ITPACK written using CYBER 200 Fortran vector syntax
where possible

149

A.I)A.PTING SCALAR ITPACK 2C FOR HIGH PERFORMANCE COMPUTERS

- DO loops which had been unrolled for scalar optimization were
not recognized as vectorizable by optimizing vector compilers

- These loops were rewritten as simple tight DO loops so that
they would be executed in vector mode

- The sparse storage scheme used for the matrix in Scalar ITPACK
was row-oriented and inhibited vectorization (The IA-JA-A data
structure as in Yale software YSMP used.)

- A column-oriented data structure was used in Vector ITPACK to
increase vectorization (The COEF-JCOEF data structure as in
Purdue software ELLPACK used.)

- The version of Vector ITPACK specifically for the CYBER 205
was tested on the CYBER 205 at Colorado State University (CSU)
and has been added to their Program Library

- The improvements in time of the vector syntax version over the
one in standard Fortran were not as significant as we had
anticipated

- The automatic vectorization available in the CYBER 205 Fortran
compiler did a very good job of optimization and vectorization

Moral: vector syntax best when used in designing and writing
new code

150

PROBLEM:
U +2u =o

xx YY

U = 1+ xy

on S=(O, 1)x(0,1>

on boundary of S

Discretization: standard 5-point finite difference formula

-6
Stopping Criterion: 5.0 x 10

Mesh Sizes: l/16; l/32; l/64; l/128; l/256

Number of Unknowns: 225; 961; 3969; 16,129; 65,025

Computer: CSU CYBER 205

CYBER 200 Fortran: Large pages, unsafe vectorization

Scalar ITPACK (unrolled DO-loops & YALE storage used;
T.O.M.S. version)

Modified Scalar ITPACK (rolled DO-loops & minor changes:
Q8SDOT used)

Vector ITPACK (rolled DO-loops, ELLPACK storage, &
CYBER 200 Fortran vector syntax used)

151

TABLE I: CHANGING SPARSE STORAGE

(Iteration .Times in Seconds with H = l/64)

Method Iterations

(Natural Ordering)

JACOBI CC 178
JACOBI SI 362
SOR 216
SSOR CG 34
SSOR SI 43

(Red-Black Ordering)

2.509 2.184 .262
5.214 4.480 .580
4.700 4.597 2,453
1.976 1.788 .831
1.791 1.682 ,970

JACOBI CG 178 2.402 2.056 .268
JACOBI SI 362 4.987 4.209 .590
SOR 196 4.110 4.017, .523
SSOR CC 341 20.327 18.472 2.177
SSOR SI 196 7.734 6.690 .701
RS CG 90 1.445 1.358 118
RS SI 182 2.980 2.779 :223

Scalar Modified Vector
ITPACK Scalar ITPACK ITPACK

152

TABLE II: CHANGING PROBLEM SIZE
(Number of.Iterations)

Method H= l/l6 l/32 l/64 l/l28 l/256

(Natural Ordering)

JACOBI CG 49 94 178 330 629
JACOBI SI 56 179 362 772 1372
SOR 50 104 216 422 872
SSOR CG 16 22 34 51 73
SSOR SI 19 29 43 61 88

(Red-Black Ordering)

JACOBI CG 49
JACOBI SI 56
SOR 52
SSOR CG 34
SSOR SI 51
RS CG 25
RS SI 42

94
179
1 O-1
62

107

ii:

178 330 629
362 772 1372
196 396 839
341 1058 3061
196 373 752

90 167 321
182 375 704

153

TABLE III: CHANGING PROBLEM SIZE

(Iteration Time in Seconds)

Method H= l/l6

(Natural Ordering)

JACOBI CG .OlO
JACOBI SI .014
SOR .035
SSOR CG .027
SSOR SI .029

(Red-Black Ordering)

JACOBI CG .OlO
JACOBI SI .013
SOR .Oll
SSOR CC .018
SSOR SI .021
RS CG .006
RS SI .008

l/32 l/64 l/l28 l/256

.040 .251 1.800 14.115
,091 .560 4.196 28.741
.292 2.446 19.828 164.940
.133 .828 4.953 28.157
. 163 . 967 5.583 32.249

.041

.091

.066

.075
113

:019
.033

.257 1.847 14.511

.571 4.277 29.394
,475 4.028 34.939

2.105 25.779 302.712
,663 4.452 36.053
109

:207
.757 5.981

1.557 11.881

154

COMMENTS ON TABLE I

- Two versions of Scalar ITPACK were compared with the CYJ3ER 205
version of Vector ITPACK

- Mesh size H = l/64 used for all runs

- Scalar ITPACK: unrolled DO-loops used in basic vector
operations for increased optimization on scalar computers

- Modified Scalar ITPACK: standard tight DO-loops used

- Vector Fortran compiler recognizes tight loops as vectorizable
but not unrolled loops

- A slight increase in speed from Scalar to Modified Scalar
version

- Vector ITPACK uses tight loops, Fortran vector syntax, and a
column-oriented sparse storage scheme

- This data structure allows the matrix-vector product operation
to vectorize to a great extent

* Considerable improvement in performance from scalar to vector
version of ITPACK *

155

COMMENTS ON TABLE II & III

- These tables are results of using Vector ITPACK on the same
problem with varying mesh sizes

- The number of iterations increase as the problem size increase

- Comparisons based on number of iterations misleading as to the
best method!

- On scalar computers, SOR with natural'orderlng is widely used
while JACOBI is not but on vector computers . . .

- Most efficient method on the CYBER 205:

JACOBI CG method when natural ordering 0 used

RS CG when red-black ordering is used

156

SCALAR ITPACK vs. VECTOR ITPACK

- Total time for each method is not significantly greater than
the iteration time in the,vector version (this was not the case
in the scalar version)

- Only N additional workspace locations required for the vector
version over the scalar version

Faster scaling and permuting of the system with the
column-oriented sparse storage scheme

- Improved performance of the SSOR methods with the red-black
ordering in the vector version in spite of the greater number of
iterations

157

A PRE-CONDITIONED CONJUGATE GRADIENT PACKAGE

Thomas C. OPPe ’ a graduate student atUT Austin, is working on
a package which allows flexibility in the choice of basic
methods and acceleration schemes.

The package has been designed to make the addition of further
preconditionings and acceleration schemes easy.

Particular attention has been paid to the choice of matrix
storage schemes with a view to maximizing vectorizability.

Features of Package:

- Conjugate Gradient Acceleration

- Pre-conditioning matrix Q (Jacobi, Symmetric Successive
Overrelaxation, Reduced System, Incomplete Cholesky, Modified
Incomplete Cholesky, Neumann Polynomial, Parameterized
Polynomials, Other pre conditionings planned such as Incomplete
Block Cyclic Reduction)

- Realistic Stopping Tests

- Automatic estimation of iteration parameters with adaptive
procedures

- Two possible data structures allowed

158

DATA STRUCTURES

Data structures which allow vectorizatlon to varying degree:

EXAMPLE:

4 -1 -2
A= -1 4 0

-2 0 4
0 -2 -1

0
-2
-1
4

ELLPACK Data Structure:

4 -1 -2
COEF = 4 -2 -1

4 -1 -2
4 -2 -1

1 2 3

:2 4 1
3 4 1
4 2 3 I

- matrix-vector product vectorizes with the use of gathering
routines

JCOEF =

- operations such as forward (back) substitutions using lower
(upper) triangular matrices do not vectorize

DIAGONAL Data Structure:

4 -1 -2 JCOEF = (0, 1, 2)
COEF = 4 0 -2

4 -1 *
4 * *

- the matrix-vector product operation vectorizes without the use
of gathering routines

-. operations such as forward (back) substitution and
factorizations vectorize to some extent

159

REFERENCES

David R. Kincaid, John R., Respess, David M. Young, and Roger
G. Grimes, "ALGORITHM 586 ITPACK 2C: A FORTRAN Package for
Solving Large Sparse Linear Systems by Adaptive Accelerated
Iterative Methods", ACM Transactions on Mathematical Software,
Vol. 8, No. 3, September 1982.

David R. Kincaid, Tom Oppe, and David M. Young, "Adapting
ITPACK Routines for Use on Vector Computers," Report CNA-177,
Center for Numerical Analysis, University of Texas at Austin,
TX, August 1982. (In the Proceedings of the 1982 Symposium on
CYBER 205 Applications, Institute for Computational Studies at
Colorado State University, Fort Collins, CO.)

David R. Kincaid and Thomas C. OPPe n "ITPACK on
Supercomputers", Report CNA-178, Center for Numerical Analysis,
University of Texas at Austin, TX, September 1982. (To appear
in the Proceedings of the InterAmerican Workshop on Numerical
Methods, Springer-Verlag, NY.)

David R. Kincaid and David M. Young, Jr., .",The ITPACK Project:
Past, Present, and Future", Report CNA-180, Center for Numerical
Analysis, University of Texas at Austin, TX, March 1983. (To
appear in ELLIPTIC PROBLEM SOLVERS II, Academic Press, NY.)

160

FUNDAMENTAL ORGANOMETALLIC REACTIONS:
APPIWCATIONS ON THE CYBER 205

ANTHONY K. RAPPE’

COLORADO STATE UNIVERSITY

FORT COLLINS, COLORADO

Pmidrroitrl Ot~~ao~et~llie Rosetions:
Applioatiois oi the Cyber 205

A. K. Rappo’
Colorrdo State Uairorrity

Fort Collins, CO 8OS23

Abstraot

Two of the most chrlleagiag problems of Orgrao-

not~llic chemistry (loosely defined) sre pollution

control with the large sp8co volooitirs needed rad nit-

rogea fir8tioa. a proooss so capably dose by nature 8ad

so rel8tirely poorly done by m8a (industry). For 8

compot8tioa81 ohonist theso problems are on tho fringe

of rhrt ir po8sibl8 with COavOatiOa81 OOmpUtOts (18rgo

nodols aoodod and roourato eaorgotias required). A

summary of tho rlgorithmio modifie8tion nredod to

8ddross these problems oa a vector processor such as the

Cybor 205 8nd 8 sketoh of our fiadiags to d8te on doNOr

o8t8lysis 8ad nitrogen fixation 8ro presontod.

163

Introduction

Two of the most challenging problems in Organometallic chem-

istry (loosely defined) are pollution control with the large

space velocities needed and nitrogen -fixation, a process so

capably done by nature and so relatively poorly done by man

(industry). For a computational chemist these problems (and

other similar problems) are on the fringe of what is possible

with conventional computers (large models needed and accurate

energstics required). The advent of vector processors such as

the Cyber 205 is making such studies feasible. A summary of the

algorithmic modification needed to address these problems on a

vector processor is presented in section I, a sketch of the

findings to date for deNOr catalysis is presented in section

11,and finally a sketch of the nitrogen fixation results is

presented in section III.

I. Algorithrie Nodifiostion.

The advent of vector processors is leading to a reexamination

of fundamental computational algorithms of general use to comp-

utational chemists and the redesign of large scale codes. The

present work illustrates both processes for the Cyber 205 comp-

uter. Reexamination of fundamental algorithms is illustrated

with an examination of the similarity transform, a matrix oper-

ation of use to computational chemists. Large scale code rede-

sign is examined through the implementation of a highly vec-

torized MC-SCF code.

A. Similarity Transform. A common sequence of matrix operations

is the similarity transform

c = AT B A (1).

164

For computational chemistry applications the matrices B and C are

usually symmetric and generally stored in lower diagonal form. If

the initial B matrix is expanded from upper diagonal form to full

matrix representation vector operations are possible for both

matrix multiplications. The linked triad instruction on the Cyber

205 is utilized for the first matrix moltiplication and a vector

dot product operation is used for the second matrix maltipli-

cat ion. In principle one could transpose matrix A and to use the

1 inked triad instruction for both matrix multiplications;

however, in this case since we only want slightly more than half

of the final results the vector dot product is preferable as it

permits selective manipulation of the column indices I and J. As

is apparent from Table I the vectorixed matrix transformation

represents a substantial improvement over scalar mode with

enhancements ranging from a factor of 10 to a factor of 40. Note

for the 300x300 matrix case we are still approximately a factor

of 2 off the maximum rate for the Cyber 205. The consideration

of an algorithm where several matrices are transformed at once is

in order. In addition it should be noted from Tabl’e I that the

expansion from lower diagonal form does not add a significant

cost (less than 10 percent). Finally, it should be apparent that

the MFLOPS rate will be independent of the number of orbitals

involved (indices I and J); the vectoriaed loops run over number

of functions not orbitals (indices K and L).

B. SCP Coding Considerations, The fundamental kernel of self

consistent field (SCF) codes in generallg2 is the energy

expression

165

E’l = f Df hij + f D:i(ikljl)
i,j i.j

k, 1
where

m
h

ij = E C;C; <X,~h!X,>
PDV

(51,

(6)

m
(ikljl) = E CtC$CiCA <Xp(l)Xa(2)Ir~2 Ixvmx,(2)> (7)

cI,v,a.n

The integrals <X,,lhlX,> and <X,Xolr~2!X,X,> need only be

evaluated once (for a given geometric point), stored conven-

ient ly, and repeatively accessed during the orbital coefficient

(Ci) and density matrix element CD:;D:i) optimization stages.

For the Restricted Hartree Fock (RHF) wavefunction D: = 2, Dij =

2, D;i, - -1, and the remaining terms are zero. 1 For wave-

functions beyond RHF the wavefunction optimization step repre-

sents a vast majority of the time needed to variationally deter-

mine E, that is, the calculation of the XV integrals is usually

relatively insignificant. 2 For this reason initial vectorization

efforts have concentrated on enhancing the time intensive stages

of an WCSCF (multiconfiguration SCF) program. It is generally

accepted’ that one of the most time intensive steps of a general

MCSCF code is the 4 index transformation needed to convert the X,

integrals to 0i integrals where

@i gE,ctx~ (5).

On scalar processors only the unique integrals are stored (the

Canonical list) and the loops are structured so as to minimize

the number of multiplications performed. On a vector processor

166

such as the Cyber 205 this step simply amounts to two sequential

applications of the matrix transformation described in (1). This

transformation will proceed at vector speed provided that for a

given ij pair all kl integrals are available fdr k>l (this

corresponds to an effective doubling of the integral file from

its canonical length). This expansion of the canonical integral

tape is accomplished through a straightforward two level bin sort

written to take advantage of the 2 million 64 bit words available

on the Cyber 2053. Since the vectorizable portions of this

integral transform are contained in the matrix transform

discussed above, the timing information in Table I applies here.

Four index transformations for 50 basis functions will proceed at

28 MFLOPS and 300 basis function transformations in general will

achieve 82 MFLOPS. Enhancements over scalar computation on the

Cyber 205 will range from a factor of 9 to a factor of 34 for 50

to 300 basis functions. For example, a full integral

transformation for 50 basis functions will maximamly take 28

seconds and for 100 basis functions 10 minutes on the Cyber 205.

For a wide class of useful wavefunctions (open-shell HF and

perfect pairing-generalized valence bond [GVB-PPI are two such

examples) the one- and two- electron density matrices Df and Dii

are expressible in diagonal form;’ that is, the only nonzero

elements are

D: = 2fi, Di{ = aij, and Di{ = bij

The energy expresion (2) simplifies to

(6).

E = 2f fihii + En(aijJij + bijKij1
i i.j

(7).

167

where

and a step where independent occupied orbitals are mixed through

pairwise rotations. 5 The OCBSE step utilizes terms

representable as a vectorizable summation of Ji and Ki operators

<XpIJiIXv> and <XCIIKiIXp> (9)

where

<xP IJilXv> = 1 Cf,Cf (pvlan)
u, n

(10).

<xP IKilXv> = 1 Ci,CA (palvn)
cr,n

J ij = (ii/jj) and K.. = (ij/ij)
1J (8)

are the usual Coulomb and exchange integrals. Restricting our

attention to this class of wavefunction leads to particularly

siaple variational equations 1 partitionable into a step where

occupied and virtual orbitals are mixed variationally (OCBSE)4

That is

<xplEilxp> = E aij<XpIJjIXv> + bij<XpIKjIXv> (111,
j

where a set of loops can be written (which are in linked triad

form and will run at >170 MFLOPS for more than 50 basis

functions) to evaluate the Ith hamiltonian (K runs from 1 to

n(n+1)/2).

DO 300 J=l,NHAM
A = A(I,J)
B = B(1.J)
DO 100 K = 1, RXS

100 H(K)=H(K)+A*AJ(K.J)
DO 200 K=l,MXS

200 H(K)=H(K)+B’AK(K,J)

(12)

As the rotations step utilizes a subset of the above integrals,

the needed vectorization effort is narrowed down to rapidly

168

generating the terns in (10). If all urn terms a>n are stored

for a given pv the double sums in (10) can be reduced to a single

dot product over a combined index y of length n(n+1)/2

IJiIX,) = E DfJt’
I

<xP

<xP IKiIX,> = E DtJt’
Y

(13)

where

JPV Y = (pv/un) (14).

Kpv s
Y ((gcr/vn) + (un/vo))/2

Currently the Di Y are precalculated, stored, and used for an

entire SCF iteration. Formulating the problem as in (13) permits

vectors ranging from 1275 for 50 basis functions to 45150 for 300

basis functions. This step will function at between 80 and 100

MFLOPS representing enhancements of between 40 and 50 over scalar

computation on the Cyber 205. Table II summarizes the timing for

calculations ranging up to a 79 basis function calculation con-

sisting of 4096 spatial configurations; that is, a GVB-PP(12/24)

wavefunction.’ If the calculation were stopped after the RHF

step the SCF would represent less than 1% of the computational

effort. Overall the GVB(12/24) wavefunction optimization repre-

sents 1445 of the total effort. This is in sharp contrast to

computations on scalar computers where this step would account

for greater than 95% of the effort. The timing for an SCP iter-

ative cycle for three cases is broken down in Table III. Note

that the time needed to generate the terms in (13) is comparable

to that needed to diagonalize the variational hamiltonians

(OCBSE).

169

II. .DeNOx Catalysis.

The catalytic reduction of nitrogen oxidos has bocomo inorer-

singly important in recent ports doe to legislation aimed at

6 reducing emission levels from non-biological sources . As Nitric

Oxide is the major NO, component of exhaust streams 7 research has

focused on the reduction of nitric oxide. Both homogeneous and

heterogenous deNOx studios have boon performed 8-11 . The use of

base-netal catalysts is of particular interest duo to their ready

availability and low cost. A transition metal ion of singular

importance in pollution oontrol is Fe(II) either as the bulk

oxide or ion oxchangod into zoolitos. Thoso Iron systems have

been demonstrated to catalyxo tho conoorsion of nitric oxide to

nitrogon with a co-roaotant suoh as CO or H2 8,9 . The mechanism

originally proposed by Sholef and Kuamsr 12 consists of a two

stage oxidation reduction soquonoe. The initial stop involves

the coupling of two nitric oxides to form nitrous oxido plus an

Iron oxide.

2N0 - N20 + ‘0’ (15)

The thus formod nitrous oxide is rapidly reduced by tho cata-

lyst8b,8d.10 .

N20 - N2 + ‘0’ (16)

Completing the cycle tho Iron oxide is reduced by reaction with

carbon monoxide forming oarbon dioxide plus the regenerated cata-

lytic site.

‘0’ + co - co2 (17)

Efforts have primarily been directed at characterizing reac-

tion (15) as this is likely to be the kinetically most diffiault

.

stop8d. For horogonoous systems (15) has boon suggostod to

involve an intrrmolocular coupling of nitrosylr to form a

dinitrogon dioxido ligand’la which rearranges to a bound cis

hyponitrite.

Y
< -

/OLN

- "\,a
(18)

\

1 2 3

Metal hyponitrites have been established to either decompose to

nitrous oxide and the metal oxide13a or react with carbon

monoxide to from carbon dioxide and nitrous oxide 13b-c .

It should be stressed that transition metal dinitrogon di-

oxide complexes have never boon isolated nor unambiguously

detected. Further, only a single mononuclear transition metal

hyponitrito complex has boon idontif iedlfb.

In this section we report energetic support for the reaction

sequence (18) for a model Fe(II) system: the dinitrosyl complex

of Iron dichloride FoC~~(NO)~~~. Tho relative onorgotics15 and

goomotries16 for the chosen complex 1, its coupled cognate

dinitrogon dioxido complex 2, and the cis hyponitrito product 3,

are discussed below. We find that the coupled products are

potentially accessible; 2 is only 29 kcal/mol higher in energy

than 1 and 3 only l nothor 19 kca.l/mol higher. Those spacies.

though unobsorvod, should be viable given an appropriate ligand

backbone. Addition of waters of hydration profoundly affects the

relative energies of tho hdyratod forms of 1, 2. and 3 (4, 5, and

6 respectively). We find that intermediates 3 and 6 are

thermally accessible. Intermediate 3 is 24 kcal/mol more stable

171

than 4 and 6 is only 4 kcal/mol above 4. This is not suprising

as 1 is a 16 electron syston. 2 is a 14 electron system, and 3 is

a 12 electron system (unusual participation by the pi lone pairs

was not observed in the wavofunction of 3 or 6).

A correlation of the bonding orbitals demonstrates that the

coupling reaction 1 to 2 or 4 to S will bo thermally allored

(occupied reactant orbitals correlate with occupied product orb-

itals17). Further, the LUHO is a non-bonding d orbital of B,

symm etry indicating that this oorrolation diagram will be valid

for systems with up to 2 moro electrons. Finally, cue of the

high lying occupied orbitals is a non-bonding Al d orbital

suggesting that the correlation diagram will be valid for systems

withuptotwo fewer electrons. Thus groupV1 through groupVII1

metal dications are potential active catalysts.

Because Fo(I1) dinitrosyls are structurally oncharacterized,

because only a single transition metal hyponitritc complex has

been structurally characterized, and because dinitrogon dioxide

complexes are unprecedented a detailed discussion of the bond

distances and bond angles that were optimized is in order. We

find the N-Fe-N angle for the dinitrosyl is 94.9 degroes, as

expected for a IM(N0)21* system16b. The Fe-P distance of 1.69 A

is in agreenent with experimental structures for linear Iron

dinitrosyls (1.66 Alga to 1.71 A18b). For the dinitrogen dioxide

complex 2 we find a N-N distance of 1.53 A, longer than normal N-

N single bonds (ranging from 1.402 A to 1.492 Al91 but still

significantly shortor than that for free dinitrogen dioxide (2.24

A2’). This is consistent with substantial nitrogen-nitrogen sigma

172

bonding. The Fe-N distance found for the dinitrogen dioxide

complex (2.23 A) is in accord with the Fo(I1) nitrogen bond

distance of 2.26 A21 in [Fe(C4H8NH>61[Fo4(CO)13~. F inally. for

the cis hyponitrite complex 3 our Fe-0 distance of 1.74 A

compares favorably with 1.69 A (the sum of the ionic radii for

OH- (1.18 A) and an estimate for the ionic radius for four coor-

dinate Fe.(IV) (0.51 A)22 1. Our N-N distance of 1.21 A is the same

as the N-N distance determined by X-ray crystallography for

i(PhgP12 13b Pt(N202)1 , the only structurally charac.terized

hyponitrite.

Summarizing, we have demonstrated that (17) is a probable

reaction sequence for group VI through group VIII transition

motal deN0, catalysts. Specifically our energetics and correla-

tion diagram suggest that dinitrogen dioxides are thermo-

dynamically and kine.t.ioally aooossible cognates of dinitrosyl

complexes. Wo believe that these results can be extended to

heterogeneous Fe(I1) catalyzed doNO, processes as well. In fact

WO speculate that the stretching frequencies observed by Ball 8C

at 1917 cm -1 and 1815 cm” are due to bound dinitrogen dioxide

which is blue shifted rolat.ivs to the free compound (which has

frequencies23 at 1870 cm-’ and 1776 cm”. Because the

coordination sphere of Fe(I1) ion exchanged into zeolites is

thought24 to contain three oxygen ligands our. energctics suggest

the frequencies assigned to a dinitrosyl are instead due to the

kinetically accessible and thermodynamically favored dinitrogen

dioxide moiety. Further, it should be noted that dinitrosyl

stretching frequencies as high as 1900 cm-1 are rare. In

conclusion :‘I 5 suggest that the kinetically (and thermodpnamical-

173

ly) most difficult stop in (17) is the isomerization of the

dinitrogen dioxide complex 2 (or S) to the cis hyponitrite com-

plox 3 (or 6).

III. Nitrogon fixation.

The fixation of dinitrogen is a reductive process of both bio-

logical and large scale industrial interest. Thermodynamically

the conversion of dinitrogen to ammonia is straightforward and

tho conversion to hydrazino is feasible undor high pressures

(AG29g for these processes aro -7.9 kcal/mol and +22.0 hcal/mol

respectively: if the pressure is increased to 100 atm then the

AG298 for hydrazine Formation is +16.7 kcal/mol).

In the known nitrogen-fixing organisms the catalytic reduction

of dinitrogen is carried out by aolybdoenzymes known as nitro-

genases25. These nitrogen-fixing enzymes consist of two protein

conpononts, a Fe-MO protoin and a Fe protein. Further, an iron-

molybdenum cofactor has boon isolatod from the Fe-MO component

protein of nitrogenaso. In faat oxtracts of the MO-Fo component

from inactive mutant strains of microorganisms are activated by

addition of this cofactor. Two modols of the active site have

been proposed that are consistent with Mossbauer and EPl! spoctro-

scopic data26 and EXAFS analysist7 of the Fe-MO cofactor.

Unfortunately the models of such active sites synthesized to date

do not reduce dinitrogen28-30.

Industrially, dinitrogen reduction occurs over an Iron cat-

alyst at high temperatures and pressures. The rate determining

step is either the dissociative chomisorbtion of dinitrogen 31

2’ + N2 - 2N-• (19)

174

or the simple chomisorbtion of an activated form of dinitrogon

8 + N2 - N2-• (20)

Both of theso procossos aro likoly followed by rapid reaction

with hydrogen (oithor molecular hydrogen of chomisorbod atomic

hydrogen).

Thus, for both biological and industrial nitrification the

activation of dinitrogen is a prerequisite for reaction with

reductants such as hydrogen. Until very recently the observed

forms of dinitrogen were bound to the metal with the nitrogcn-

nitrogen multiple bond largely intact (non-activated).

Md&sN Y=NmN.cM

7

(21)

Thus those model compounds will only reduce dinitrogon undor

32 rather harsh conditions .

An understanding of a rocontly observed dinitrogen binding modo

(analogous to organic atines)

Md+Nd (22)

* 8

will provido additional insight into biological and industrial

nitrif icat ion. The reactivity and structural characteristics of

a new class of Tantalum complexes 33 suggest the bonding pattern

8 in (22). Tho Ta-N bond distances of 1.796 A and 1.840 A are

quit0 similar to thoso obsorvod in normal Tantalum iaido

complexes33 (1.765 A to 1.77 A). In addit ion, reactions (23) and

(24) are both obsorvodf3 (reactions characteristic of metal-

ligand molt iple bonding).

175

M=N-R + R'2C=0 _\ r2c=w + 'M=O' (23)

X=N-N=M + 2R2C=0 d R2C=N-N=C2R + 2’M=O’ (24)

Finally, there is an obsorvablo *activation’ of the nitrogen-

nitrogen bond (N-N bond distances of 1.282 A and 1.298 A compared

to free dinitrogon which has a N-N bond distance of 1.0976 A).

In this section we roport energetic support for the kine,tic

and the rmodynan ic accessibility of 8 for molybdenum complexes.

Our model consists of a bimetallic complex consisting of two

Molybdenumtetrschloride units bridged by a dinitrogon molecule.

For this complex we have characterized the *reaction path’

connecting the two likely resonance structures 7 and 8

C14Mo-N=N-MoC14 c--3 C14Mo=N-N=MoC14 (25)

9 10

We find local minima characteristic of each resonance structure

indicating the ‘resonance’ interaction between these two forms is

not enough to result in a single averaged structure 34 . However.

the resonance interaction is sufficient to provide a very low

barrier interconnecting them (less than 1 kcal/mol). Thormodyn-

amically we find 9 to be 20 kcallmol more stable than 10 for the

tetrachloride ligand backbone. This thermodynamic difference

could easily be overcome by an alteration of the ligand backbone

and future studies will concentrate on this. Geometrically, for

9 the MO-N distance is 2.28 A and the N-N distance is 1.10 A and

for 10 the lo-N distance is 1.82 A and the N-N distance 1.23 A.

This is in accord with a suggestion that the tetrachloride

backbone does not fully activate the dinitrogen (a fully

activated N-N distance should be on the order of 1.30 A).

176

Tablo I. Comparison of Soalar and Veotor M8triX Trrasforrations.
(for various sized ratrioes, tiros ia aeu.)

Matrix Soalar (with Opt.) Vector (times x 100) P8tiO YFLoP3
size First Sooond Total Expand First Soooad Tot81 (S/V) (,Yoo.),
NxNl Mult. Mult. Tiro Array Hult. Mult. Tino

50 0.041 0.083 0.124 0.063 0.78 0.51 1.36 9.1 27.8
100 0.32 0.65 0.96 0.23 3.65 2.59 6.48 14.8 46.5
150 1.07 2.58 3.64 0.51 9.34 6.91 16.76 21.7 60.5
200 2.52 6.74 9.2s 1.01 19.34 14.32 34.67 26.7 69.3
250 5.39 14.35 19.74 1.83 33.43 25.64 60.90 32.4 77.1
300 9.90 27.14 37.03 2.92 53.22 42.23 109.84 33.7 82.4

Table II. Timing Breakdown for MC-SCF Enorgy Gonotation.
(times in seconds)

stop Molooulo/No. of basis functions

H-0/7 FeC12 l (H20)2/43FoCl2(NO)2/65 FoC~~(NO)~(I!I~O)~/~~

Calculate
One oloctron

Integzals

Calculate
Two electron

Intograls

Sort Two
Electron
Integrals

Generate
Extondod Huckel
Starting Guess

Obtain
Hartroo Fock

Enorgy
(10 it.)

Obtain
MC-SCF
Energy
(10 it.)

Total Time
% of Time
HF
MC-SCF

0.13 36.4 48.5 81.0

1.06 86.6 191.7 535.5

0.0s 14.7 94.3 247.7

-e--

0.11 1.8 3.1 -SW-

s--s
-e-e
1.35

8.1
--w-

0.8 1.1 s-s-

-B-B 72.5 137.5

-s--w -----
140.3 411.2 1001.7

1.3 0.8 -em-
---- 17.5 13.7

177

T8ble III. SCF Timing Bre8kdorn for 8n Individu81 Cycle.
(Tires in seconds, rates in YFLOPS)

Wavefunction Generate
Description J. 8nd K.

M:tricos’

Time R8to Time

H20 MBS EF 0.0001 4.6 0.006

F&l2 l (H20)2

HF 0.0082 49.0

FoC12(N012
BF 0.0310 60.6

GVB(12/24) 2.012 81.4 2.832

Tr8nsform
J. rnd K.
Y:tricos'

0.017 0.078 w--s --we 0.177

0.034

5.322 3.515 0.516 0.090 13.745

OCBSE Orbit81 Optimizo Tot81
Rotations aij and b.

1J

Time Time Tiro Timo

0.004 e--w -s-s 0.011

0.241 s-m- ---- 0.306

1.990 0.328 0.091 7.253

178

Acknorlegorort

We 8ro gr8tofol to tho donors of tho Potroloom Reso8rch Fund

for support of the noncomput8tion8l 8spocts of this roso8rch.

Further, tho gonorous comput8tional support of tho Institute for

t!orput8tion81 Studios 8t CSU is gratefully rcknorlodgod.

179

1. Bobrouicz, F. W.; Goddard III, W. A. "Modern Theoretic81
Choristy: Methods of Electronic Structure Theory", H. F.
SCh8OfCr 111, Ed. Plenum Press. Now York, NY, 1977 Vol. 3, p. 79.

2. Das, G.; W8h1, A. C. L Chem Phps., 1972, 26, 1769; Einzo, J. ---A --
L Chem. Phvs., 1973, 22, 6424; Yaffo, L. G.; Goddard III, W. A.
Phvs. Rev. 8. 1976, 12. 1682; W8hl. A. C.; Das, G. "Modern
Theorot% Chemistry: Mothods of Electronic Structure Theory",
B. F. Sch8ofer III, Ed., Plenum Pross, Now York, NY, 1977 Vol. 3,
P= 51; Dalg88rd. E.; Jorgenson, P L Chom. Phvs,, 1978, 69, 3833;
BOOth88n. C. C. J.; Detrich, J.; Hopper, D. G.; Int. J-quantum ------
Chom. SKR& 1979, 13, 93; Dalgaard, E. Chom, Php& Lott., 1979,
$1, 559; Jorgenson,-?.; Yo8gor. D. L Chem. Phpc, 1979, 11, 757;
Shopard, B.; Simons, J. Int, L Qurntum CaTm ----we ---A Snm~ 1980. 13,
211; Longsfield, B. H. L Chom, P&pt., 1980, 12. 382; Brooks, B.
R * Laidig, W. D.; Saro, P.; Schaefer III, H. F. L Chom. Phvs.,
1;80, 12, 3837; ROOS, B.; Taylor, P.; Siogb8hn. P. Chom, PhpL,
1980, 33, 157; Siegb8hn, P.; Almlof, J.; Heiborg, A.; Boos,-B. J.
Chom Php&, 1981, 13, 2384; Longsfiold III, B. H.; Lio, B. J. s-e.4 --
Chom Phpr., ---A se 1981, 11, 478; Shop8rd. R.; Sh8vitt, I.; Simons, J.
J- Cher PhpL, 1982, 15, 543; Longsfield III, B. H. L Chem ---a -- ---A
Phxs.. 1982, 21, 4073.

3. Bappo’, A. K. (1982) unpublished, tape input 8nd driver rou-
tine from SORTIJK by Bair, B. A. and Goddard III, W. A. (1977)
unpublished. This program does 8 bin sort whore each bin is 1.5
milion words long, as many bins 8ro used 8s needed to process the
tape in 8 single p8ss. Significant voctoriz8tion has not yet boon
implomontod.

4. Hunt, W. J.; Dunning Jr., T. B.; Goddard III, W. A* cb&
Phys, Lott., 1969, 3, 606.

5. Bunt, W. J.; Goddard III, W. A.; Dunning Jr., T. Be c&am.
Phvs. Lett,, 1970, 6, 147.

6. a) Dwyor. F. 0. Catal, BOY., 1972, 6, 261-291. b) Boyrood,
J. B. Prop, Enorgp Combust, Sci,, 1976, 3, 135-164. c) Martin, G.
B' Heap, M. P. _____
Bo;onborg, H. S.;

AIChE SKRL srxi93, 1977, 13, 349-365. d)
Corrau, L. M.; Slack, A. V.; Ando, J.; Ozley,

J. H. Pron. E=gigp.Combust Sci 1980, 5, 287-302. 01 Knmmer, J. ------L --a,
T. grog, Encrgq Combust. Sci., 1980, 6, 177-199.

7. Harrison, B.; Wy8tt, 1.; Gough, K. G. C8trlysis, ----- 1981, 2, 127-
171.

a. a) Fu, C. M.; Doeba, M.; Hall, W. K. Ind. En& C&km. Pro&
Bos, DOY ,-AI 1980, ts, 299-304. b) Fu, C. M.; Korchak, V. N.; Hall,
W. K.; L Catal., 1981, 51, 166-171. c) Sagawa. K* I.; Chens Ye;
Kubsh, J. E.; Delgrss, W. N.; Dumssic, J. A.; Ball, W. K= L
C8f;aL, 1982, 16, 112-132. d) Potonchi. J. 0.; Hall, W. Km L
F&l., -- 1982, 18, 327-340.

180

9. 8) McCandloss. F. P.; Hodgson, K. M.; White, R. 8.; Bowman* J-
D l ; Ind, E2L caaa Process DOS e----e --a DOY --AI 1980, 12. 108-133. b)
Coarty, P.; x8yn81, B.; Robours, B.; Prigont, M.; Gugior. A= &&a.
Ena. Chem, Prod. Ros. DOY --A,
Loronzoiil,--F. L c8t81,,

lgso, 12, 226-231. c) Bosca. G.;
1981, 12, 303-313. d) Yang, R. T.; Li,

K. T. InL Enk ChoL ROS. Dov,, 1982, 21, 405-408. 0) yuonr S-i
Chon, m.; fTbsh:-IT. E.; Dumesic. J. A.; TOPsOor No; TOPsOer H*
L Phxs. caas, 1982, &a, 3022-3032.

10. a) Lorenzelli, V.; BUSCI, G. B.; Al-Mlshtr, F.; Shoppard. N.
L Catal,, 72, 389-391. b) Kappts, M. M.; Staley, R. R. L 1981,
Am Chom Sot -A ---A .--&I 19<i, 102, 1286-1287.

11. a) Haymore, B. L.; Ibors, J. A. 5, A& C&m. SOC., 1974, 25,
3325-3327. b) Eisonborg, R.; Hendrickson, D. E. Adv. in
Catalysis, 1979, 28, 79-172 and references within. C) Bottomlo?:
F. * Lin, I. J. B.; Hukcridr, M. Z, A& Chom, Sot
523c8-5242. d) Kadok, J. A.; Tulip, T. H.;

--LS 1980. Nz.
Budge. J. R.; Ibors. J.

A. J- Mel, Catsl,, 1981, 12 --* 239-243.

12. Shelef, M.; Knmmor, J. T. AIChE Spm& Sor --2, 1971, al, 74-92.

13. a) Oza, T. M.; Oza. V. T. LChom. Sot., 1953, 909-913. b)
Bhaduri, S.; Johnson, B. F. G.; Pickard, A.; Raithby, Pw R.;
Sholdrick, G. M.; Zuccaro, C. I. L Chem, Sot. Chem. CoBs 1977,
354-355. c) Bhadari, S. A.; Bratt, I.; Johnson, B. F. G.; Khair.
A * Sogal, J. A.; Walters, R.; Zoccaro, C. J. Chem. Sot. Dalton
ib'ai,

------s
234-23 9.

14. a) The reduced system FoC~~(NO)~- has been prepared and char-
acterized (14b-0). In addition 8qooons Fo(I1) has been reported
to rod:qo NO to N 0. This re8ction is thought to involve
Fe(N012 (14f,g). t) Silverthorn, W.; Folthrm. R. D. Inorn..
~~C!L.. 1967, 6, 1662-1666. c) M8rtini, G.; Tiozzi, E. Trans.
Faradax Sot --A, 1971, 51, 2538-2547. d) Gwost, D.; Caalton, K. G.
Inorg, Chem., 1973, 12, 2095-2099. e) Connelly, N. G.; Gardner,
C. Z, Chem. SOL Dalton ------ l 1976, 1525-1527. f) Bonner, F. T.;
Pearsall, K. A. Inor8‘ Chom., 1982, 21, 1973-1978. g) Pearsall,
K. A.; Banner, F. T. Inorx, Chom,, 1982, 21. 1978-1985.

15. a) The enorgotics reported are the differences between GVB-CI
(1Sb) calculations for the three species, the differential ef-
fects due to waters of hydration wore obtained with a GVB-PP
(15~) w8vofunction (the waters were treated at the Hartree Fock
level). Tho pairs of electrons explicitly correlated wore the
ones shown in figure 3, the N-O sigma bonds and the nitrogen s
lone p8irs (8 GVB(12/24) w8vofunction). Within this 24 orbital
space 8 R-CI(4) (1Sd) plus R-CI(1) times singles CI (15~) was
performed with a maximum of eight open shell electrons (a total
of 11499 spin eigonfunctions and 48921 determinants). Effective
potenti81s rote utilized on Fe (1Sf) and Cl (1Sg). The basis set
on Cl was 8 minimum b8sis sot optimized for TiC14 (1Sh). The s
and p basis on Fe was the vrlonco portion of Wachters basis (1Si)
augmented with core functions an8logoas to those used on Cl (1Sg)
(s exponont=0.4907936. p exponent=0.1350391). The d basis was

181

tho five gaussi8n basis described previously (1Sj). The N rnd 0
basis sots wero vrlonco double ZOt8 8s discussed previously
(1Sh). The basis sots on the waters of hydration wore minimum
b8sis sots where the linear parameters were optimizod for
FcC~~(H~O)~, the 0 oxpononts as above, and the H oxpononts wore
Buzinag8’s four quassian set (1Sk) (scaled by 1.2). b) D8viS, J.
H *
9'9',

Goddard III, PT. A.; Harding, L. B. J. A& Chem. SOC., 1977,
2919-292s. c) Bobroricz, F. W.; Goddard III, 8. A. In

“iodorn Theoretical Chemistry: Methods of Electronic Structure
Theory”, H. F. Schaefer III, Ed., Plenum Press: Now York, 1977
Vol. 3 Chapter 4, pp 79-127. d) Harding, L. B.; Goddard III, W.
A. L Am. Chom, Sot., 1976, 98, 6093-6099. e) Casewit, C. J.;
Goddard III, W. A. ibid., 1982,- I,OA, 3280-3287. f1 Melius, C. F.;
Olafson, B. D.; Goddard III, W. A. Chts PhpL Lott., 1974, 28,
457-462. g) Rappo’, A. K.; Smedloy,? A.;-Goddard III, W. A. J.
Phvs, Chem., 1981, 81, 1662-1666. h) Rappo’, A. K.; Goddard IIT
W. A. In “Potential Energy Surfaces and Dynamics Calculations”,
D. G. Truhlar, Ed., Plenum Press, New York, 1981 pp. 661-684. i)
Wachters, A. J. H. L Chtm ----A g&q&, 1970, 52, 1033-1036. j)
Rappe’, A. K.; Smcdley, T. A.; Goddard III, W.-x. J. Phvs. cacm,,
1911, &S. 2607-2611. k) Huzinaga, S. J. Chem. Phvs.. 1965, 41,
1293-1302.

16. a) For 811 tho systems the Fe-Cl distance ~8s fixed at 2.30 A
(16b). For 1 tho Fe-N dist8nce and tho N-Fe-N angle wore opt-
imized utilizing 8 GVB-CI (151. Tho N-O distance was hold fixed
at 1.15 A a value appropriate for linear nitrosyls(l6c). For 1,
2, and 3 the Cl-Fe-Cl angle was fixed at 120.0 degrees (larger
than a totrahodral anglo as would be expected for such systems).
For complex 2 the Fe-N distrnce, the N-N distance, and tho depen-
dent N-Fe-N angle were optimizod with an HF wavefunction. The N-
O distance ~8s fixed at 1.21 8 value appropri8to for a N-O doublo
bond (1501. The N-N-O angle of 115 dogroes was taken from the
parent nitrosamino (150). For complex 3 the Fe-O distance, the
N-N distance and the dependent 0-Fo-0 angle were optimized with a
HF wavefunction. The N-O distance was fixed at 1.41 A for cis
hydroxydiimido (1Se) (quite close to the 1.39 A found for the
Platinum cis-hyponitrito (13b)). The N-N-O angle was taken as 118
degreos ag8in from cis hydroxydiimide (150) (also in agreement
with the angle from the Platinum cis-hyponitrito (118.5 dogroes)
(13b)). For 4, 5, and 6 nitrogen and oxygen geometries were taken
from 1, 2. and 3 respectively. The Cl-Fe-Cl angle was increased
to 170.0 degrees. Finally, the geometries of the waters of
hydration were taken directly from gas phase B20, the O-Fe dis-
tance of 2.15 was takon from FoCl2dihydrato (16d) and the O-Fe-0
angle fixed at 90.0 degrees. For 4 tho pianos containing the
hydrogons and oxpgens of the waters were taken as perpendicular
to the plane containing the Iron and the two nitrogens. For 5 and
6 the water plants were the same 11s the one containing the Iron
and the two nitrogens. b) Extrapolated from analogous Mn and Rn
dinitrosyl complexes; Laing, M.; Reimann. R. H.; Singleton, E.
Inorg, Chem., ---- 1979, I.., 1648-1653; Pierpont, C. G.; Eisenberg, R.
Inork Chem,, 1972, 11, 1088-1094. cl. Foltham, R. E.; Entmark, ----
J. H. In “Topics in Inorganic and Organometallic
Stereochemistry”, G. Gtoffroy Ed., Wiley-Interscience, New York,

182

1981 pp 155-209. d) Horosin. B.; Gr80borr E. 1. L CBpL $&XL.
1965, 42, 898-901.

17. Woodward, R. B.; Hoffmann, R. L A&. Chem, a9~. 1963, 82,
395-397; Woodw8rd. R. B.; Hoffmann, R. "The COnSOrY8tion of
Orbital Symmetry". Vorl8g Chomio, Gmbh., Weinboim/Bergstrrsso,
1970.

18. a) Clogg, ____ W. Inorp,Chem., 1976, 12, 2928-2931. b) Albrno. V.
G - Ar8noo. A.; Bollon, P. L.; Ci8ni, G.; Ranassori, R. L
O~~rnomot, Chom,, 1974, 67, 413-422.

19. a) Bartoll, L. B.; Bigginboth8r, B. K. Inorg, C-&=p.-, 1963, 1,
1346-1351. b) Merino, Y.; Iijiama, T.; Yur8ta, I. &AL c&z&
SOL JaEa=, 1960,
HoderT K. I, Cheat.

32, 46-48. c) Gilbert, M. 1.; Gundorson, G.;
Phvs., 1972, 25, 1691-1697.

20. Kukolich, S. G. LAsChem, Sot 1982, &O&n --&S 4715-4716.

21. Doedens, R. J.; D8hl. L. F. L A& gags aOC.* 1966~ 3s~
4847-4855.

22. Shannon, R. D.; Prewitt, C. T&Act8 ggyst., 1969. szi, 92S-
946; Sh8nnon. 8. D. ibid --A* 1976, u3, 751-767.

23. F8toly. W. G.; Bent, H. A.; Crawford, B. L Chem, EhZr.,
1959, 3l, 204-217.

24. Maxwell, I. E. Adv --A in c8t81 -- --we-* 1982, 31, l-76.

2s. For 8 recent rooiow of molybdenum biochemistry, soe:
"Holybdonum 8nd Molybdenum-Contrining Enzymes”, If. P. coughlrn,
Ed., Porgsmon Press: Now York 1980.

26. Rawlings, J.; Sh8h. V. K.; Chisnoll, J. R.; Brill, W. J.;
Zimmtrmann, R.; Munck, E.; Ormo-Johnson, W. B.; L Biol, Gaga,,
1978, 222, 1001.

27. Cramor, S. P.; Bodgson, K. 0.; Gillurn. W. 0.; Mortonson, L.
E .; L Ah Chem, 29~. 1978, fQ2, 3398; Cramor, 9. P.; Gfllur, W.
0 * Hodgson, K. 0.; Mortonson, L. E.; Stiofol, E. I.; Chisnell,
J:'R.; Brill, W. J.; Shrh, V. K. /1.&a., 3814.

28. Coucouvanis, D. ACE.-Chom..Res., 19gl. &AD 201.

29, Wolff, T. E.; Berg, J. M.; W8rriok, C.; Bodgson, Km 0.; Bolmn
R. B.; Frankel, R. B.; L,A&Chem, goC%, 1978, &PO, 4'l30; wo1ff*
T. E.; Borg, J. M.; warrick, C.; Hodgson, K. 0.; Franh:rl# R. B.;
Helm, R. H. ibid,, 1979, lfil, 4140; Wolff, T* Em; Borg, J- 1-i
power, p. P.; Hodgson, K. 0.; Holm, R. B.; Fr8nke1, R. B* IbAd..
5454; Wolff, T. E.; Power, P. P.; Fr8nke1, R. B.; Balms R. B.
ibid.. 1980, 102, 4694; Armstrong, W. H.; Balm, R- Ha ik.i&~
1981, 103, 6246.

30. Christou. G.; Garner, C. D.; Iabbs, F. E. &9lk C&i% Act&#

183

1978, 28, Llgg; Christoo, G.; Garnor, C. D.; Mabbs, F. E.; Ring,
T. J. L Chem ---A SOC., Chen, CommuqL. 1978, 740; Christom. 6.; w-e--
Garner, C. D.; M8bbs, F. E.; Draw, M. G. B. fbid., 1979, 91;
Acott, S. R.; Chritou, G.; 68rnor, C. D.; King, T. J.; Mabbse F-
E .; Miller, R. 1. Inorg, ghlrn, Act8 --e-s 1979, 22, L337; Christou,
G .; G8rnor, C. D.; Miller, R. M. L Jnora, Biochem -------A.* 1979, &A#
349.

31. For recent reviews of the industrial nitrogen fixation pro-
cess, soot Ertl, G. Catol. Rev.-Sci. Ens., 1980, 21, 201-223;
Boudart, M. Catal. Rev.-Sci.%i&, 1981, 23, l-15.

32. Chatt, J.; Ditworth, J. R.; Richards, R. L. Chem ---A 1978, Rev.,
589-625 and references within.

33. Turner, H. W.; Follm8nn. J. D.; Rocklage, S. M.; Schrock, R.
R. J. Am Chom sot ,-f ---A --A# 1980, 7811:Rocklago, S. 1.; Schrock. R. R.
/bi;d., 7808; Churchill, M. R.; Wasserman. H. J. Jnorg, Chem,,
1981, 20, 2899; Churchill, Y. R.; W8ssorman, E. J. jblL. 1982,
21, 223TChurchil1, M. R.; W8ssorman, H. J. ibid., 278.

34. Pauling, L. "Tho N8ture of the Chemical Bond", Cornell
University Press, Ithacr, Now York 1960.

184

THREE-DIMENSIONAL FLOW OVER A CONICAL AFTERBODY
CONTAINING A CENTERED PROPULSIVE JET:

A NUMERICAL SIMULATION

GEORGE S. DEIWERT
NASA AMES RESEARCH CENTER

MOFFET FIELD, CALIFORNIA

HERBERT ROTHMUND
CONTROL DATA CORPORATION

SUNNYVALE, CALIFORNIA

THREE-DIMENSXONAL FLOW OVER A CONICAL AFI-ERBODY
CONTAININQ A CENTERED PROPULSXVE JET:

A NUMERICAL SIMULATION

Georp S. Dehert*
NASA Ames Research Center, Moffett Field, California

Herbert Rothmnndt
Control Data Corporation, Sunnyvale, California

The supersonic flow fleid over a body of revolution
incident to the free stream is simulated numerically on
a large, array processor (the CDC Cyber 205). The
con&uration is composed of a cone-cyiiider forebody
followed by a conical afterbody from which emauatu
a centered, supersonic propulsive jet. The free-stream
Mach number is 2, the je&exit Mach number is 2.5, and
the jet-to&e&stream static pressure ratio is 3. Roth
thuexterndfl~aadtheexhaastanidedairata
common total temperature. The thin-layer approximb
tion to the time-dependent, compressible, Reynolds-
averaged Navier-Stokes equations are solved using an
implicit tl.uite-dXerence algorithm. The data base, of
5 million words, is structured in a ‘pencil” format so
that efacient use of the array processor can be realized.
The computer code is completely vector&d to take
advantage of the data stmcture. Turbulence closure
is acheived using an empirical algebraic eddyYviscosity
model. The configuration and flow conditions cor-
respond to published experimental tests and the com-
puted solutions are consistent with the experimental

hItZOdUti0n

In 1980, a computational study was described in
which the threodimensional flow tleld over axisym-
metric boattailed bodies at moderate angles of attack
was simulated.’ The exhaust plumes aere.modeled by
solid plume simulators, and a second-order-accurate,
implicit Unite-difference algorithm was used to solve
the governing partial differential quations on the
ILLIAC lV array processor. Several Row fleids were
computed and the results compared with published ex-
perimentd data The promising results of that first
study provided the incentive to extend t& work to
include propulsive exhaust jets emanating from the
afterbody base. The lLLI.AC IV waz subsequently
removed from service, however, and it became neces-
sary to scale down the size and scope of the study to
the capacity of existing computer resources.

l Raumh Scientist, Manbar AILL
tCompucw Aualyac.

This paper ir decivtd a work of the U.S. Govermncnt and
therefore is in the public domain.

In Jauuary 1933, the results of a study of super-
sonic sxisymmetric Row over boattails containing a
centered propulsive jet were presented.z Those results,
obtained using a Gray 1s computer with 10s words
of main memory, were compared with existing ex-
perimental data. Jet-t&re+stream static pressure
ratio and nozzle exit angle were Wied parametriczilx
and the predicted trends agreed well with experiment.

The purpose of this paper is to describe the
vectnrized implementation of the thne-dimensional
Navier-Stokes code on a Cyber 205 computer for boat-
tailed afterbodies at moderate angles of attack’that
contain a centered propnlsive jet. Some computed
rezults, which correspond in part to a published ex-
perimental study for a like configuration and flow con-
dftious, are included for illustration.

Aftarbdy Codgudion

The geometric couflgumtion is a 9 caliber body of
mlution composed of a 14O half-angle conical nose,
a cyiindricd forebody, and an 3’ half-Angie conical
aft&&y of 1 caliber length. Centered inside the
afterbody is a conical nozzle with exit diameter of 0.6
caliber that is flush with the afterbody base. The
nozzle exit half-angle is 20”.

Experimental studies for the same cotiguration
were performed by White aud Agre113 for the model
immersed in an air stream Rowing at Ma = 2.0 and
a jet-exit Mach number of 2.5. White and Agrell con-
sidered angles of incidence to the free stream up to 8”
and jet-to-free-stream static-pressure ratios up to 15.
Because of limited acces to the Cyber 205 computer,
computed results are included in this paper only for
the case in which the angle of incidence is a0 and the
jet-to-bstream pressure ratio is 3.0.

Gmwniug Eqnationr

The equations describing the flow are the
Reynolds-averaged Navier-Stokes equations. These are
written below in strong couserpative form in general-
ized coordinates as

BtQ + &(F. 6) + &,(F. 3”) + a,(F 7) = 0 (1)

187

L

and t,,?!,, and& are the Cartesian unit vectors and
f, gq, i&p are the contravariant base vectora, which
CtUlhWTitttS~

where I(, gv, audjlr are the covariant base vectors writ
tenas

188

The flux vector F cau be decomposed into a
parabolic part, FP; which contains only gradient
d#usive terms, and a hyperbolic part, FH, which con-
tains only convective-like terms, as

Pi
PfG + PC

FH =

I I

pvi + pZy , F&-F--H (2)
PG + PG

(e + PIa

For flows in which the shear layers are thin(whenRc >
> 1) and aligned with one’ principal plane (say the
plane normal to the u coordinate), the parabolic part
of F can be neglected in the other two coordinates ((
and c), without any real loss in accuracy. This is con-
sistent with boundary-layer theory and yet maintains
the coupling between the viscous and inviscid regions
that is critical in simulating interactive flows. With
this thin-layer approximation, Eq. (1) is rewritten as:

A body~riented computational grid is constmcted
hamanner compatible with the thin-layer approximrc-
tion. Shown in Fig. 1 is the grid used in the
prexnt computations. Figure la shows the complete
co-on and Fig. lb the detail in the base region
oi the afterbody. Fkadiai grid lines on the forebody join
the surfgctorthogona#y. On the atterbody aud in the
exhnur& plume,the rad3aI lines are normal to thebody
rdr, Them are 81 points distributed along the body!

---a. -a.- -1a 0 10 a0 30

I) X

II

a60’ a94 a96 9.02 9.06 9.10

bl X

Fig. 1 Computational grid: bilateral plane of sym-
metry. a) Complete contlguration (14-0 x 100 x 20);
b) Base-region detail.

with clustering near the nose and near the base. Of the
81 points, 21 are used to defhm the afterbody shape;
the afterbody is 1 caliber long. An additional 59 points
are cbstributed downstream of the afterbody to a dib
tance equal to 21 forebody diameters from the noxzle
base. These 140 total points detie the 6 coordinate
distribution. The radial distribution, corresponding to
the rl coor&ate, extends from the body surface to a
distance equal to 30 forebody diameters both ahead
of the nose and normal to the body axis. A total of
60 points is used in this region, with a high degree of
streching used in order to resolve the subiayer of the
turbulent boundary layer. (Here the first grid point off
the body surface.corresponds approximately to a value
of vf of 8 where qf = (P.d”YS - rl.)/P”.) Au
additional 40 points are distributed across the nozzle
and its blunt base, extending from the centeriine to
the body surface. Of these, 20 are in the jet exit plane,
and 20 are on the blunt base itself.

One- and two-parameter hyperbolic-tangent strech-
ing functions4 are used in the base region to focus
resolution near the comers and to achieve a smooth,
piecewise continuous distribution of points across the
exhaast plume and base. At the nozzle exit, points are
distributed along an arc describing the conical
flow exit plane (that is, the arc radius is
equal to the norAe exit radius of 0.3 caliber
divided by the sine of the nozzle-exit half-
augie of 200). Downstream of the nozzle, the
grid lines are aligned so aa to ciq~ly ap
proximate the eshaust piume shape for au cx-
~nta~rsobserved axisymmetric flow by Agrell

ahmh IS for the same geometric
eonhgoratiok a.nd free-stream conditions, but for .L
jet-to--stream pressnrb ratio of 9. The
third dimension, c, is generated by rotating the
two-dimensional (E, u) grid about the cylindrical
tis while maintaining a uniform angular dis-
tribution between the rotated planes. Here,
20 radial pianes are used with planes 2 and
19 coinciding with the bilateral plane of sym-
metry, where plane 2 corresponds to the lee and
piane 19 to the windward. Planes 1 and 20
are image planes used to enforce a symmetry
boundary condition. Thus, there are ([, 7)
planes distributed every 10.588” around the half-
body.

The total grid dimensions are (149 x 100 x 20), cdr-
responding to the [, 7, andc directions, Wpectively,
for a total of 280,000 points. Of these, (80 x 40 x 20),
or 64,000, lie inside the body and are not used in the
computation, leaving an actual total of 216,000 points
used in the computation.

Data Struehn~

There m 23 variables required at each grid Point
cormspon&ng to the 5 conserved quantities in the 8

v&or, 5 residuals for the solution vector, 9 metric
cafttcients, the Jacobian of the transformation, and
3 componenfr of vorticity tlsed in the turbulence
hasport model. This rem&s, for a compdationsl grid
of 216.000 points, in a data base of 5 x lo6 words.

To accommodate this large data base on a vector
processor with a limited main memory, the computa-
tional grid is divided into subsets called ‘blocks.” This
data structure was originally devised for implemen-
tation on the ILLIAC lV array processor by Lomax
and Puliam and is described in detail in Ref. 6. In
the present case, each block is a 20 x 20 x 20 cube
for a Mai of 8,000 points and a data base subset of
184,000 words for the 23 variables. The blocks are
stacked together in each coordinate direction to form
a sequence of bloeb called ‘pencils.”

For 8‘ gixen coordinate direction, one complete
pencil of data is loaded intO the central memory, and
computations are performed on that data correspond-
ing to the coordinate direction.. At auy point in the
computation, only 17 variables are required to be in the
main memory at one time (6 of the 9 metric coefacients
are not used in any given direction). This results in
a *bare subset of 136,ooO words. For a proces-
sor with 10’ words of main memory then, as marry
ma seven blocks of data can be held in storage for im-
mediate processing. The block dimension is an ad-
justable parameter and is limited only by the maxi-
mum pencil leugth and the main memory of the vector
pnxessor.

Shown in Fig. 2, in physical coordinates, are the
block boundaries for the present co&guration. Figure
2s shows the complete conflgnration and Fig. 2b the
detail in the afterbody region. Figure 3 shows the
corresponding block structure in computational space.
The mesh nodes of the computational domain are ar-
ranged in a rectangular latice with positive integer
coordinates (c, 7, c). Each node belongs to three pen-
cils, a E-pencil, an q-pencil, and a c-pencil. The pencils
of each sweep direction are given a detlnite order. For
the <-pencils, the u-coordinate varies most rapidly as
the pencil index increases; for both the q-pencils and
c-pencils the coordinate [varies most rapidly. Figure
4 illustrates this sequencing for the present data struc-
ture.

Within a pencil, the planes are naturally ordered
by the sweep coordinate. The pencils of data can be
stored in the correct pencil ordering for just one sweep
direction only. When sweeping in the other clirec-
tions, pencils of data are gathered and fetched for com-
putation and scattered back when writing the updated
values. Additionally, the ordering of nodes within a
plane can be correct for just one sweep direction, and
it is necessary to transpose the the data in memory
so that each piane of nodes normal to the sweep direc-
tion forms a contiguous set of memory locations. In

189

the pment code, the ordering of nodes ‘u m~& for
the -ion asid transpose routines are.used for the
other sweep dire&ions.

BASE.REUlON DEWL

Fig 2 Block boundaries: pi@cai space. a) Compieh
l2tdgmaq b) B8swegiondetaiL

rl

Fig. 3. Block boundaries: computational space, corn-
plete configuration.

&‘WJClL PUNF

q-PENCIL PLANES

JT‘ -

I’ g

St--400 ’ If

El2

/‘i II

1 .I 1 I

T?--” - ---m
‘I

r ---

‘/‘II yt--4atl 1 I

fls
1 / /i I 1 I I
&Lti t -2--20

E

Fig. 4 Data structure within pencil data base.

NuInericaiAlgorith.m

The numerical algorithm used to solve Fq. (3)
is the ap rorixnatt factored scheme of Bea- and
Wm. P Rewriting Eq. (3) as

w = --B~(FH.b)-aa,(F.a)-ac(FH.~) = R (4)

the corresponding difference equation is then

W,LF A4 = RE + R, + Rf

where the operators are defined by

(5)

LQ = (I + At&X’ - 61 J”V(A<J)
f~=((1+At6~CCn--~J-LV~A,J-At69J-L.M”J)
fc=(I+At6,B=- E~J-‘V,A$)

& = -At6&FH. jl’)” - (~,q T* (V~A#J Q”
R v = -At&(JF . ye)” - EE r’ (V,A,)2J-Q”
2, = -At6,(JFH. f)” - EE J-’ (V,A,)2J Q”

where the Se, 6,, and 6, are central-difference
operators; Vf, V,, and Vr are backward-digerence
operators; and A+ A,, and ALr are forward-digerence
opera&on in the if--, q-, and @irections, respectiveiy.
The At term is a forward-difference operator in time.
For example,

190

&Q m Q”+l - Q”

AeQ - Q(E + A6 rl, I) - UC, 1, f)
and

v&l - Q(t, rl, f) - NC- A& I), f)
The Jacobian matrica

A = WQr~ b,

amdescribed in detail by Pulliam and S-r.* Fourth
order explicit terms (preceded by the catkient CE)
and second-order implicit terms (preceded by the
c&Went 61) have been added to control nonlinear in-
stsbiiities.

Eqnatioa (5) is solved in three successive sweeps
of the data base, each sweep inverting one of the
operaton on the left-hand side:

The solution is advanced in time by adding. A& to Q
after the t sweep.

In the general cabt, pencils of data are loaded ink
central memory four timeLand operated on for each
time-step advance: once each for the .f and q direc-
tions and twice for the c direction. First the right-
hand side of Eq. (5) is formed and then the left-
hand-side operators are inverted one by one. A flow
schematic showing the ordering of operations, inciud-
ing data reads, transposes, computations, and data
writes is shown below where the symbols R and w
represent variables used to accumulate the right-hand-
side elements and vorticity elements, respectively, for
each coordinate direction.

<-pencils: (initial step only)

Read: Q, J, .+-metrics
Compute: R--c, U-W(()
write: R, w

Red Q, J, R, w, g-metrics
Tbmqom: Q, J, R, w
Cornpate: R = Rt + R,,

w = 40 + W(f)
Thnnpom: R, w
Wite: R, w

q-pencils:

Red Q, J, R, w, g-metrics
lh~pow: Q, I, R, w
C-wnt= w - w(Q + 4s) + w(rl)

PIi4

Read: Q, J, L;‘(R), c-metrics

-pow: 4, J, L;‘(R)
Compute: L;’ L i’(R)
Tranapom L;‘L;‘(R)
write f;’ f’:(R)

Resd: Q, I, L;‘L;‘(R), f-metrics
Compute: AtQ, 8, R = EC, w = 40
write: 8, R J

End Loop

In this flow sequence, 62 variables are read, 57
variables are transposed, and 31 variables are written.
Fbr the special case in the present study in which the f-
pencils are just one block long, a more efficient operz+
tion seqnence can be used that substantiatly reduces
the number of reads and writes required. This is shown
b&w.

~-pencils: (initial step only)

Read: Q, J, t-metrics
Compute: R = RC, w = w(t)

191

Begin Loop

ppencik

Read: ~-me!trics

Ransposc: 8, J, R, w
Compuk R = & + R,

w = w(E) + 4s)
Thnsposc: R, w
write: R,w

q-pXlCilX

f--pcacils:

Read: f-metrics
Transposer Q, J, L’,‘(R)
Cornpate: r;‘&‘(R) -

lhnapow f;‘&‘(R)
wit.c r;’ f;‘(R)

&pencils:

Read: Q, J, r;‘f;‘(R), [-metrics
Compute: A&, Q

R = Ret w = w(t)
Write: 89

End Loop

In this flow sequence, 32 variables are read, 52 are
transposed, and 18 variables are w&ten, a savings of
nearly 50% in the I/O. In both the general case and the
special case, the data read-transpose sequence and the
transpose-write sequence can be replaced by/cbe more
etlkient “gather” and *scatter” commands ,available
for the Cyber 205 (Ref. 9). Further improvements in
eficiency can be obtained by using asynchronous I/O
in conjunction with a rotating memory backing store.
The most efkient code, however, will be realized by
using a solid-state backing store in conjunction with
gather and scatter commands or with a code that is
fully core contained.

The numerical algorithm conforms well to large
vectorization. For block sizes of 20 x 20 x 20, the vector

length is 400. Timing studies with the present code in-
dicate ;uL MFLOP rate (million of floating- point opera-
Tom per second) of-115 +hm computing in half pn~i-
sion (32-W word lengths) on a 2-pipe cont&uation.
On a 4pipe con&u&ion the MFLOP rate increased
to 207. There are approximately 3,800 f$ating point
operations executed for every grid node per time step
resulting in a CPU time of 33 x l(T* set per point per
time-step on a l-pipe machine and 18 x lose set per
point per time-step on a 4pipe machine. The transpose
times (transposes do not contain any floating-point
operations) are 5.6 x 10-c set per point. Equivalent
transposes performed by gather and scatter instruc-
tions require just 1.8 x lVa set per point. When
synchronized I/O to and from rotating backing store
WM used, the average I/O time was 25 msec pervari-
able per block T’hia translates directly into 172x 10?
= per point, but averlapping the I/O reduces this to
94 x l@ see per point. (The Cyber 205 us& rot these
timing studies was conflgumd with four I/O channela
tu xcommodab overlapping.) This time, a muk in
Iarge part of the, latency time in accessing disk Rles,
can be reduced to. nearly zero by using I/O butTers in
conjunction with asynchronous I/O or with solid-state
backing storage. The use of I/O b&en, however, im-
plies the mailability of additional main memory and
imposes au Aiitional constraint on the pencil size. To
amid this comtraint, the data flow should be modified
such that a subset of contiguous blocks of data in a
pencil are operated on while blocks at each end of the
subset are being btiered in and out.

Boundary Conditionr

Boundary conditions are imposed at the ends of
each data pencil; the data pencils are identifled by
number in Fig. 3. For the .+direction, pencil No. 1
starts at the jet-exit plane- Supersonic conical flow
conditions corresponding to a jet-exit &Mach number of
2.5 and a static pressure of 3p, are imposed at the
first data plane. At the last plane of each of the Eve
[-pencils, which correspond to the outflow boundary,
fIrsorder extrapolation is used so that a& = 0.
Pencil No. 2 in the .$iirection begins at the blunt base.
Here slip conditions and an impermeable adiabatic wall
are imposed so that

B&9) = &t&u) = B&WI) = 0

pu = 0

Be[e - 0.5(pu2 + ptJ2 + pw2)] = 0

Pencils 3, 4, and 5 in the {direction begin on the
grid centerline of revolution (at f = 0) ahead of the
forebody nose. Here a second order extrapolation to
the centerline is used such that

B&l) = 6&m) = B.&w) = a,(p) = 0
while the lateral momentum is set to zero

192

PO-0
Inaddition,ateachrl,theQPana~a~ara
f on the centerline and used as bounw values for ail
f at each 7. Speciai treatment of th4 bw CO~IIM at
the afterbody-blunt-base junction is asid to vcount
for the singnhu nature of that Llnc For the .+w~II,
tk p-line of data in pencil No. 3 that corru.ti to
this corner is treated in the same manner as the llrst
plane of data in pencil No. 2 that corresponds ta thh
Mnntbare. ThislIneofdataistreateddIR”iyin
the q-sweep and is described in the second paragraph
~OllOWiDg.

After the forebody &JW Ild ir fully Moped
during tk conrse of the solution, the first two q-pencils
can k dropped from the computation and boundary
conditions imposed on the @mcils tkt comnd
to the fully developed flow at the plane that is tk
updream boundary of rppencil No- 3- This reducea
thu totd data baee by six bloeb without attsrfnFtk
vdidity of tk solution, This simpIi.katioo is strictly
valid only for supersonic external Bows, The solution
downstream can be further developed to steady state,
and jet parameters can even be varied to generate &
ditiond solutiona

Boundary conditions for the r@irection consist of
the imposition of free stream conditions at the last
plane of each of the seven ppencils; n+slip, adiabatic
wall condition for the fhst plane of q-penciI& 1 through
4, which correspond to the kdy snrfat; and &s&order
extrapolation to the centerfine for pencils 5, 6, and T
such that S,Q = 0, Ceuterlinet avera@g, aa described
for the &encii lmndy-ahead of the body, is also
ased for the q-pencil boundary in the jet. The line of
data in q-pencil No. 5, which corresponds to the corner
between the afterbody and the blunt base, is treated
in tk same manner as the list plane of ~-pencils 1
through 4. As a result, this line of data is double
vdued: one value for the 6 sweep described previously
and the nc+slip, adiabatic value for the q-sweep.

For the <direction, bilateral symmetry is imposed
by setting the data at the 6rst and last g-planes equal
to the values in the third plane and in the second from
last plane, respectively, with a sign change included in
the lateral momentum component (pv).

Turbulence Clomre

The Reynolds stresses and turbnlent hea+flux
terms have been included in the stress tensor and
heat&u vector by using the eddy-viscosity and eddy-
conductivity concept, whereby the coeficients of vis-
cosity and thermal conductivity are the sum of the
molecular (laminar) part and an eddy (turbulent) part.
Eddy-viscosity models incorporate turbulent transport
into the molecular-transport stress tensor by adding
the scalar eddy-viscosity transport catflcient /.Q CO

tk eoemcient of molecnlar viscosity, (P. = p +
/IT), tkxeby relating turbnlent transport directly to
gradienta of the mean-&w mriables. In a Cartesian
coordinate eystem, the thnadimensional molectdar
stress t4m3or can be written as

In tk thin-shear-layer approximation, the only com-
ponents of the stress tensor that are retained are those
having gradients with respect to 7 only.

Turbolent heat tramport is deaned in terms
of mcuttnergy gradients and an eddy-conductivity
cdkient K. such that K, 3: K + KT. ~ically,
tk ~ondnctivfty coeacient is related to tk eddy;
viacoai~ emilleient via a turbulent Pmndtl nnmber
PrT where

Prr - C;BTIKT
The turbulent Prandtl nnmkr is assumed constant at
a vdue of 0.9.

The elpbraic eddy-viscosity model nsed here b
that pmpoeed by Badwin and Lomax.l” This model
in particnlariy well suited to complex flows that con-
tain regions in which the length scales are not cbariy
dellned. It is described briefly as follows: For wall-
bounded shear layers, a twdayer formulation is used
suchthat

87 - h)mk for fl > Tar**oavar

where 7 is the normd distance from tk wall and
rl#W.- is the smdlest value of q at which values
fkom the inner and outer formulas are cqud. The
PrandtCVan Driest formulation is used in the inner (or
wall) region.

(PThrnw = L@fwl

I! - 0.4q [1 - =d--rllA)l

A = W”/diK
The formulation for the outer region is given by

(/‘T)adar = 0.0166 Cc, F-.ra Fmah)

F *
4

flmas m-s
rakm = C-i qmu ~i~/F,, >

The quantities qmW and Fmor are determined from
the function

where Fmor is the maximum value of F(q), and qrnar is
the wlue of q at which it occurs. The function FKI#~(~)

193

is tk KIebanoff’intermittency function &en by

Tk mi@ & IS the di&~nte bshem the msxi-
mumandminimamtota
(along an q-coo- line, Y

v&city in the proffle

&f3L-dir

and for boundary layers, tk minimum is deaned M
zero. The other constauts am given by

c a, = 1.6) C.L - 0.25) CKh) = 0.3

The adm&age of this model for bouu*lqFr
Ilows sm as foiluus: 1) for the Inner .-on, therdoeity
audlcngthscduareaIwaysweII~andtk
modd is eon&tent with the ‘law of the rdl”; 2) In tk
outerregioll forweu-behaved (simple) boundMy a
rkre there is a weII-detied length xdt (q-J, the
velocity scale is determined by F-, which is a length
scale times a mrticity scale; 3) ie the outer region of
complex boundary layers where tk length from a waU
becomes meaningless, a new length scde is deternun
from a velw (qdi/) dbidai by s velocity Gs.
(/WI), and tk velocity sede is q&f.

The outer formulation, which is independent of q,
is also used in the free-shear flow regions of separated
Row aud in regions of strong viscons/inviscid intelc
action- In thesa regions tk van Driest damping
t-m bti-d4f, is negIecte& For jets and wakes,
tk Klebanoff intermittency factor is determined by
measving from the grid centuIi.ne, and the minimum
term in qdi/ is ednated ftotiw tk profIle insksd of
bdi deaned as zero.

The didlty o? the eddy-viscosity model constants
for high-pressure, compressible exhaust jets has not
been established, and conrpressibiiity e&cts are not
accounted for.

At the exhaust-jet exit plane and in the near-base
region, the eddy viscosity is assumed to be negfigibly
smalt and to increase spatially to the value given by
the outer model over a short distance downstream of
the base.

computed RemIts

As mentioned in a preceding section (tierbody
Contlguration), a flow field has been computed for
the body placed at an angle of incidence of 60 to
a free stream at Mach 2. The jetexit Mach num-
ber is 2.5 with a static pressure 3 times that of the
free! stream. Beginning with an impulsive start in 3
uniformly flowing stream at Mach 2, the solution was
hanced timewise to a dimensionless time (t d/U,} of
5.1, where d is the forebody diameter and Ua is the
undisturbed free-stream speed. Although a solution

at a tima of 5.1 is probably not sul3ciently converged
to permit valid qnantitative comparisons with e&
mant, it is sul!lcient to establish the basic Ilorr-field
ehac~Q~ and TV Wstrate tk features of tk solution
and the computer code.

The InItiaI thn~step size of At =O.OOOl”wti in-
creased to At =O.OOl as the solution passed thri& its
initial rapid transient. A variable time-step was used
in the snbsonie flow regime downstream of the base in
order to lainimizc the growth of nonlinear instabilities
aggravated by changes in sign of the eigen-vaIues in
this region. The time-steps in this subsonic region were
scaled down by a factor equaI to the local streamwise
Mach number with a cutotT minimum factor of 0.001:
Imposed to prevent the time-step from going to zecm.

Omuring phyaicaUy in this region is a rapId ix-
pansion of tk jet around thu n&e lip folIowed iin-
mediately by a strong neompressIon in th& toti of E
bar& shoclr; in addition there Is a slip surf’ dew
tk bouidary between the exhaust plume and the ex-
tunaI fIow. Each of these three high-gradient features
Is focused at the n&e lip and demands ahigh degree
of nsolution that haa not been provided for in the com-
pantiondgridusedhere.

Shown In Fig 5 are computed density contours
in the biiateal plane of symmetry in the vicinity of
the body. The lower s&ace is the wind side. Clearly
&fined downstream of the afterbody is tk slip sur-
thee demarcatiug the boundary ktween the exhaust
plume and the exterud flow. The propulsive jet ex-
pands rapidly around the no&e lip and can induce- ‘low
separation 00 thu aft&~@ surface. For low-pnssprt
jets, or no jet at all, there will be a region of recir-
culating flow on the blnnt base. The afterbody drag is
strongly Muenced by the detail of the separated flow.

Fig. 5 Computed density contours, plane of symmetry:
L&, = 2, i!!fJ = 2.5, PJ/&, = 3,

a = tP, Re,, = 1.5~10~.

194

Thedetailofthesep8mtioupstttrnisshMLiB
Fig. 6 in which computed surface stnamlines have
been mapped on the afterbody and projected on the
bU&erai p-f-qmmetq view of the denrifi COP
tour plot OICT the aft portion of the w onl~s There
h a se-ion Mde on thu lee generator of the coni-
cad afterbody at t = 8.92. All surface streamlines on
the lee side of the body flow into this node. A line of
sep8ration crtends from this Mda, dowuwwl on the
afterbody surface, to a sepantion saddle at-t - 8.98,
W from the wind generator. The lkm direction aIong
this line of xpwation is upw8rd fkom the uddle to the
nod+ There is alao flow optward tinr the separation
saddle downward to the end of the but, around to the
wind generator,

Shown in Fig. T is a psrspcctive view of the
SW&G stmmliics on the afterbody and the blunt
base. The outer edge of the base is a dividing surface

so ; LEE Sl6E
,d

-_-_-am. ..-m c
-..-~

o.oo&2s6sobt5Q00-~ 0
X Y

Fig. 7 Psnpectire vi& of surface streamiines over
conical afterbody and annular base.

streambe extending from a saddle point on the lea
generator to a node point approximately 33. from the
wind gene&m. A dieding streadne.can be seen cir-
cnmscribing the annular base connecting a saddle point
on thewindward and a nodal point on the Iet- This
line sepvates the external flow frcm the flow from the
jet. Flow is upward from the windward saddle to the
lee&& node.

Shown in Fig. 8 is a sktch of an end-view projec-
tion of the Ml view of the afterhody (not to scaie)
shming ail the dividing streadbes and their COP
responding singuhr points and flow directions.

Fig. 8 End-vim schematic of dividing surface and
singuhr points streamlines.

195

The trajectories ait the hid puticiea in the phm
0fs~etryinthebssaregionaresharrninFlg. 9. On
thelec,seeninF~.94ths~~mtbejctcrprsds
around the no&e Ep and mores outward M the
edge of the base. Upon meeting the m flow, it
turns d-m and de&es the exhaust plume boap
dary. Aregionof rmfs4 flWCaIlb8CitiU~sCendHJWS
the afterbody lee generator The path of the fluid in
the external Ilow is over this separation region and
around the afterbody base to the slip surface dcaniag
the boundary between the exhanst plume and stand
flow. The! point defined by the outer edge of the bsst
and the afterbody lee generator is a singular point that
from the fluid streamiineq appears as a saddle point in
both the circumferential plane and in the r;diai plane,
and as a nodal point in the streamwise biluerd plaue
of symmary (the plane of the beae).

On thu winMad, shown in Fig. 9b, the a
lines just off the wind vr of the afterbody
tarn the corn- an&mm toward t& slip sarfam
b&men! the jet and the eternal &JW. All eternal
flow streamllnu (exciudlng the surface s~auGne) ap
prosch the slip surface downstream of a uddle point
in the bilateral plane of symmeU’y locati at I =
9.016 on the piume-exfzrnai ffw boundary. Thb ~QP
face strumIi.ne tyrns the corner and appmuhes the
windward iaddle point on the base it&elf. Fluid from
the jet expands around the nozzle lip and m~vcs out-
ward. The fluid just off the lip nwvu to the saddle
point on the baue and thu fluid farther inside ihe lip
expands toward the plume boundary domstream Of
the saddle point on the slip surface-

surfue-prusure distributions over the dterbody
snrke ad over the base are shawn in Figs. 10a
an&lob, respe&iwAy. An expansion at the forek~~&
afterbody junction over the afterbody surface can ,be
m This expansion is greatest on the windyard,
where the pressure le4 is highest, and decreases
toward the lee The circumferentid wriation of pres-
sum near the lee side is quite smail for the entire length
of the aft&&y. Toward the end.of the afterbody
there is a slight recompnssion on the lee side which
is not ohmed on the windward. Just a& the end of
the afterbody there is an expansion as the flow tarns
around the aftcrbody toward the base.

Flgum lob shows a projected view of the base
aad j&exit prasure distribution. The left side of the
‘top hat” prusure distribution corresponds to the lee,
andthefusidecorrupondstothetidward. The
large uniform premure &tribdion. of the ‘top hat”
codgurdon corrupondr to the high-pressure jet, and
tb uxlddng %im” of the hsc is the distribution on
the anmdar baw. On the windmud there is a rapid
expmsbn a& thm Male lip followed by a fairly large
recompression tward the outer edge of the base. The
M trend is obnerved at other radid positions around
t&r barn but to a lassa degree. The circnmferentid
W&ion of but pressure is consistent with the ex-
puimentaily obsemd variation of White and Agreil
for tbm same jet-timstream pressure ratio. It is
hhmdng to note, h-m, that in most experimen-
trl&adhthemdidmri&ionofpfemre is ai3sllmed
Ggiigibie axi k not musured. The distribution in Fig.
lob clearly idicatu a subatautid variation across the
-barn

‘241 I

Fig. 9 Bare-region path lines: plane of symmetry. a) Lee; b) Windward

196

a

WIN0 SOL

a

0
fd. 76 U. 8.2 64 M 66 9.0

ic

-m- %dtei R A. aact Agrail, J., %x&tail and Base

An implleit soiutiolr pIotedmh for the thin-
Rusure Prediction Including Flow. Separation for

lqx approximation to the thrudim- time=
Afkbodies with a Centered Prupuiaiwa Jet and

dependent, eompruaible, Rqnoldb~ Navier-
3upumnie bternd Flow at Smail Angiea of Attack,

St&s equations on a large array pmcesao rhaabeen
ALU Paper 77-058,197y.

described. An example problem HIM simulated on thu 4vblokur, hf., “On One-Dimensional Stretching
CyberM5computertha%rquireda~bueof5r Functfom for Flnite Difkence CakJations,” NASA
10‘ words. The efllcient tratmeat of thialarge data C&3313,1980.
b- has been ducribed in some detail. sAgd, J. ad White, R A, ‘An E&&mental

Thu ffow-SeId simulated was the supersonic flow Innatigation of Supersonic aetric Flow over
m6fabad~ofm&tio~athcide8tstot~~ BoatMa ContaMng a Centered Propulsive Jet,” FFA
sUeam. A prop&ire jet ummatud Itom the boatraiki TecL NotuAU-813, 1974.
afterbody, inducing a complex, threedImensional
separated-tlow pattern This squated flow-field,

‘Lomu, E and Pulliam, T. H, ‘A Fully Implicit

which contributes substantially to the afterbody dr;rg,
Fxtored Code for Computing Thr*Dimensional

has been described in detai1 for the particular geometry
Flora on the ILLIAC XV,” Parallel Computations, G.

and flow conditions considered. The computed solu-
Rodrigue, Ed., Academic Press, New York, 1982, pp.
217-250.

tion is cousistent with experimental data observed for
the same configuration and flow conditions. ‘Beam, R. and Warming, R. F., *An Implicit

Finit+Difference Algorithm for Hyperbolic Systems in

RUfUUllCU
CowrPation-Law-Form,” Journal of Computational
Physics, Vol. 22, Sept. 1976, pp. U-110.

‘Deiwert, G. S., ‘NumericaA Simulation of Thre+
DimensionaI Boattail Afterbody Flowflelds,” u
Joarnal. Vol. 19, No 2, May, 1981, pp. 58+88.
‘Deiwert, G. S., .A Computational Investigation
of Supuraonic h+etric Flow ovsr Boattails
Containing a Centered Propulsive Jet,” AIM Paper
8%l462,1983.

“PuUiam, T. H.. and Steger, J. L., ‘Implicit
Finite-Difltrence Simdations of Thret-Dimensional
Compressible Flow,” w Vol. 18, No. 2,
Feb. 1986, pp. 158169.
sCDC Cyber 200 FORTPUN Version 2 Reference
Manuzd, Control Data Corporation, Sun.n~e, Caiif.,
1981.

F& 10 surf~plwsuru dlatributionr psnosctira a) conical af&body~ b) Annular base and jet exit pie

“‘Baldwin, B. 9. and Lomax, H., Thin Layer
Approximation and Algebraic Model for Separated
Turbalent Flows,” ALU Paper 78-257, 1978.

197

STEADY VISCOUS FLOW PAST A CIRCULAR CYLINDER

BENGT FORNBERG

DEPARTMENT OF APPLIED MATHEMATICS
CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

STEADY VISCOUS FLOW PAST A CIRCULAR CYLINDER
--

Bengt Fornberg
Department of Applied Mathematics 217-50

California Institute of Technology
Pasadena, Ca 91125.

ABSTRACT

Viscous flow past a circular cylinder becomes unstable around
Reynolds number Re = 40. With a numerical technique based on Newton's
method and made possible by the use of a supercomputer, steady (but
unstable) solutions have been calculated up to Re = 400. It is found
that the wake continues to grow in length approximately linearly with
Re. However, in conflict with available asymptotic predictions, the
width starts to increase very rapidly around Re = 300. All numerical
calculations have been performed on the CDC Cyber 205 at the CDC
Service Center in Arden Hills, Minnesota.

INTRODUCTION

The structure of viscous steady flow past a circular cylinder at
high Reynolds numbers forms one of the classical problems in fluid
mechanics. In spite of much attention, several fundamental questions
remain open. Apart from a previous calculation by the present author
[d, complete, steady flow fields have been obtained numerically only
UP to around Re = 100. This is also close to the upper limit for
experiments (due to temporal instabilities). Both the early numerics
and the experiments point to a recirculation region growing linearly
in length with Re. Figure 1 shows the length of the wake bubble
against Reynolds number according to some different calculations.
Persistence of this growth for Re -> 00 has been assumed in most

201

recent asymptotic studies of steady high Reynolds number flows past a
body (e.g. F.T. Smith [lS]>. A possible Euler flow, consistent with
this idea, was analyzed by Brodetsky [3] in 1923. It is known as the
Helmholtz- Kirchhoff free streamline model. This suggested limit is
characterized by two vortex sheets leaving the body tangentially
approximately 55O from the upwind center line and extending to
downstream infinity, enclosing a region of stagnant flow. Although
this undoubtedly is a solution for Re = 00, G.K. Batchelor [2] gave
in 1956 several arguments against this being a possible limit for
Re -> M. He proposed an alternative in which a finite wake with
piecewise constant vorticity was bounded by vortex sheets. Some
suggestions about how such a flow might be reached as a limit for
increasing Reynolds number have been given by Peregrine [lo].
However, only very few Euler solutions of this so called
Prandtl-Batchelor type have been calculated (e.g.[12] contains one
example and some further references). None of these are for flow past
a cylinder. Figure 2 gives an 'artists impression' of what the two
models for infinite Re might look like. The calculation [6] hinted
at a process leading to a shortening of the wake. The present work
suggests (in agreement with F.T. Smith [14]) this shortening at
Re = 300 was erroneous and caused by insufficient numerical
resolution. However, our best current evidence is that the
qualitative result was correct. We beleive that a reversal of trends
towards a shorter wake can be expected around Re = 500. This
contrasts with the conclusions in [14]. Our main evidence is that
the wake increases in width far more rapidly after Re = 300 than the
asymtotic analysis allows for. Independently of the position of
artificial boundaries and of numerical resolution, we find that the
flow is of different character past Re = 300. Significant amounts of
vorticity are then re-circulated back into the wake bubble from its
end. We hope to soon carry this study past Re = 400.

All the numerical calculations in this present work were
performed on the Control Data Corporation Cyber 205 computer located
at the CDC Service Center in Arden Hills, Minnesota. We wish to
express our gratitude to Control Data Corporation for making this
system available for this work.

202

MATHEMATICAL FORMULATION.

With a cylinder of radius 1 and a Reynolds number based on the
diameter, the governing time independent Navier-Stokes equations,
expressed in streamfunction y and vorticity ~0 , take the form:

(1) bY+h= 0

aw d’s (2) 4w + Y-e- ‘y . --- - --- . a-??) = 0
2 X ay bY bX

Accurate numerical approximation and economical computational
solution of these equations in the given geometry poses a series of
difficulties which previous investigators have dealt with in a
variety of ways. The most serious of the difficulties seem to be:

1 . Boundary comditions for q at large distances.

2. Boundary condition for # at the body surface.

3. Avoiding the loss of accuracy that comes with upwind
differencing.

4. Economical choice of computational grid.

5. Reliable and fast rate of convergence of numerical
iterations.

The point 5 above has been the limiting factor in virtually all
previous attempts to reach high Reynolds numbers. No reliable
technique has emerged to prevent slowly converging iteration schemes
from picking up physical instabilities in the artificial time of the
iterations.

203

thin
much

(3)

(4)

The

NUMERICAL METHOD

All vorticity is concentrated on the body surface and in a quite
wake downstream of the body. Outside this region we can use the
simpler equations:

A-Y = 0

w = 0

top part of Figure 3 shows the upper half plane minus a unit I circle and, dotted, a region which contains all the vorticity (apart
from the far wake). of the figure shows how the
mapping z = t/?+ l//T? m~~~to~he~~r~o the first quadrant and a
rectangle respectively. Figure 4 shows what a rectangular grid in
the z-plane (with non-uniform stretching in the vertical direction)
can look like in the x-plane. The Navier-Stokes equations,
transformed to the z-plane take a form almost identical to (1) and
(2):

(5) ATf + W/J = 0

Re
(6) Am+ e-w a-Y ;z . ?tt _ ___ . 2) = 0

2 89 AY)

where J = \%12 is the Jacobian of the mapping. These equations
were modified further by subtracting out
function for the difference is v = $

otential flow. The stream
-253 l On a grid in the

(stretched) z-plane, equations (5) and (6) were approximated at all
interior points with centered second order finite differences. To
close the system, boundary conditions have to be implemented for
Y and m at all boundaries.

The extreme sensitivity of the final solution to small errors in
these conditions has only recently been fully recognized [6]. For
example already at Re = 2 it was found that use of the free stram
value for Y along circular outer boundaries at distances 23.1 and
91.5 caused 18 $ and 4.4 $ errors in the level of vorticity on the
body surface.

204

The 'Oseen' approximation is'the leading term in an asymptotic
expansion for the flow far out in a wake (e.g. Imai [8]). In po1a.r
coordinates, it takes the form

(7)

(8)
CDRe Q -Qc

m= - --------- e
4fir

Q
where Q = ($Re r-Y'2 sink@ , erf Q = 2'1c -%

a e-'=ds and C, the drag
coefficient. C P can be evaluated as a line integral around the body.

The performance of this Oseen condition as an outer boundary
condition is disappointing. The percentage errors mentioned above
improve, but only to to 3.4 % and 1.2 $ respectively. For increasing
Re, direct use of (7) becomes meaningless. Figure 5 illustrates this
by comparing the true V (here the difference between streamfunction
and free stream, not potential flow) with the values from (7) at
Re = 200. The two fields bear no resemblance to each other at the
distances from the body we are interested in.

Comparison with numerics suggest that (8) is far more accurate
than (7). Furthermore

1 . Any errors in (8) are present only in a very narrow region
along the outflow axis,
as with (7).

not along the whole upper boundary

2. The governing equation for d is of a type which cannot
transport incorrect information for t3 back up towards the
cylinder.

With this background, let us briefly outline how the boundary
conditions of high accuracy can be implemented on the edges of the
present computational region. Figure 6 shows this region in the
z-plane with a typical vorticity field together with its reflections
in the coordinate axis.

205

BOUNDARY CONDITIONS FOR

Left boundary: 5= 0

Bottom boundary: q= 0

Right boundary: S=s,

Top boundary:Y)= 9,,,0 ,<%is,,*

v= 0.
w= 0.
a’u
w = W (noting that ?.-.- <<

Jr2
<< aB

a+
along this boundary).

A correction to the integral above for vorticity reaching
outside the downstream boundary can easily be incorporated. For a
fixed grid, the dependence of Cy at each boundary point on ~3 at
each internal point is independent of Re and can be calculated as a
large matrix once and for all. A boundary condition of this kind was
used in all the calculations presented below. However, we currently
use a different condition. A wide two level difference formula can be
found which is consistent only with the decaying modes of the
equation DY = 0 (as opposed to the usual 5-point 3-level formula
used inside the region to approximate both growing and decaying
modes).

BOUNDARY CONDITIONS FOR 03.

Left boundary: 5= 0 ,0 In,. a= 0.

Bottom boundary: q= 0 ,O 5 s< 2 . A relation based on AW+w% 0

2 isLf,*
and Q' an even function of tj .
a= 0.

Right boundary: 5=5,,0 $f)<q,. %,=wr,(q&i,, I2

Top boundary: 9=3,,0 I5 i!&,,. LJ = 0.

The condition at the right boundary comes from the observation
that the leading term of (8), transformed to 5 ?I -coordinates
simplifies to

(9)

where c, and cz are constants. The mapping has achieved a
separation of variables.

206

The discrete approximations at the interior points together with
the boundary conditions form, after minor simplifications (explicitly
eliminating all boundary unknowns w
boundary), a non-linear algebraic sy%?of ?izF)(2N-3Tt

the top
equations

with equally many unknowns. In most earlier works, great care has
been taken to ensure that, at this stage, this (or some equivalent)
non-linear system has a diagonally dominant form for low Re. This
would allow direct functional iteration to convergence. Techniques
like upwind differencing [1],[4],[11] help in this respect at the
cost of lowered accuracy. Newton's method, described below, offers an
outstanding alternative.

NEWTON'S METHOD.

Newton's method is a very well known procedure for finding zeros
of scalar functions. If a function f(x) is given, we can find an x
such that f(x)=0 by the procedure:

(10) X0 'close' guess of root

f(xJ
(11) X = ---me-

n+\ xH -
f'(x,)

The iteration step can be written

(12) f’(x,) Ax, = -f(xJ

n = 0, 1, 2, . . .

Known, f' evalu- Unknown, the Known, residual.
ated at the latest correction we Should be zero
available approxi- should apply if x m had been
mation x,. to x h , i.e. exact.

X = x,,+ Ax,,. m*t

Written in this form, the generalization to systems is
straightforward. For example the system with three equations in
three unknowns:

207

(13)
fb, y, z> = 0
dx, y, z> = 0
h(x, y, z> = 0

can be iterated

Known, "Jacobian" Unknown, Known,

I- 7
I
I f(x ,y ,z ,i
I I
I I

= - I g(x ,y ,z >I
I I
I I

i- h(x ,y ,z >J

of system. corrections. residual.

Each iteration involves the solution of a linear system. Like in the
scalar case, convergence is quadratic and guaranteed to occur for
approximations sufficiently close to any 'simple' solution. The
realization that this procedure is practical for extremely large
systems (several thousands of equations) is rather recent and linked
to the emergence of powerful computers.

For our present problem, use of Newton's method offers several
major advantages:

1 .

2.

3.

The quadratic convergence allows no possibility of 'inheriting'
temporal instabilities to the artificial time of the iterations.
Convergence is guaranteed if an isolated solution exists in the
neighborhood of a guess.

If turning points or bifurcation points are found, they will
cause no difficulties.

No upwind differencing is needed. This procedure is typically
employed for two reasons:

208

1. To ensure convergence of an iterative method.

2. To avoid mesh size oscillations.

The first reason no longer applies. The second one alone can
then be addressed in more refined ways.

4. Boundary conditions at the body surface become easier to
implement. The fact that we have two conditions on Q' and none
on w can cause a problem if (5) and (6) are treated separately.
With Newton's method, all we need is that the number of
conditions is right.

The only disadvantage with Newton's method is the computational
cost. This is where supercomputers enters our picture.

SOLUTION OF LINEAR SYSTEM

Let [UI:., j=2,3 ,...,N be vectors with w -values from grid lines
293 'hr 9***, and similarly for L3\5 (j=2,...,N-1). For example qZ would
contain the v -values along the grid row nearest to the 3 -axis and
qNthe values along the top boundary. The structure of the entries in
the Jacobian matrix reflects directly on the difference stencils and
the boundary conditions. Figure 7 shows a suitable ordering of
equations and unknowns and the corresponding structure of the
Jacobian. Since the top right corner contains a single diagonal,
explicit multiples of the top (N-2)(M-2) equations can be superposed
on the equations below to modify the structure to the one in Figure
8. The bottom left corner form a separated system of size (N-l)(M-2).
This was solved by a border algorithm
descri~~~t~~ [g].

similar to the one
The major cost comes from the LU-factorization of

A. However, one more rearrangement can be done to achieve a
significant speedup. The A-matrix has a block 5-diagonal form with
the structure shown in Figure 8. A similarity transform with a
permutation matrix can rearrange this into another matrix of
identical structure. Instead of N-2 rows of blocks, each of size M-2,
we get M-2 rows of blocks of size N-2. With M typically around 6sT
and cost proportional to the square of the bandwidth, this reduces
the memory needed for the LU-decomposition about 6 and the operation
count by 36.

The complete linear solver lends itself ideally to
vectorization. Every part of significant cost turns out take a form
of a 'linked triad' with vectors never shorter than 4(N-2)+1 or M.
The linked triad on the Cyber 205 is the fastest floating point

209

operation the machine offers. Expressions of the form
vector-op-vector-op-scalar where one 'op' is + or -, the other * can
execute with both operations running simultaneously. On the 2-pipe
205, the algorithm has a potential for 200 mflops (million floating
point operations per second, 64-bit accuracy). Including a startup
cost of 83 macihne cycles per linked triad operation, average vector
length of around 166 (which we will exceed in later test cases) could
give a full 100 mflop overall computational performance. In the
calculations presented below, the grid had 131 by 21 points.
Building up the Jacobian (in scalar mode) takes 2.3 seconds and the
solution of the linear system 3.7 seconds (for an average of 55
mflops during this part). Recently implemented vectorization of the
Jacobian and the new boundary condition brings these numbers to 0.026
seconds, 1.75 seconds and 60 mflops respectively.

PHYSICAL CONCLUSIONS

This report is a preliminary one of work in progress. Only a few
initial test runs have been performed so far. However, we can already
conclude that the wake appears to continue a linear growth in length
with increasing Reynolds numbers up to Re = 400. Figure 9 shows wake
length versus Re for some previous calculations compared with current
results. Figure 10 shows streamlines and Figure 11 vorticity fields
for different values of Re up to 400. The vorticity field at Re =
400 shows a recirculation back into the wake from the end of the
bubble as well as a quite sudden increase in width. Our most recent
tests with a computational grid of 196 by 31 points (density
increased by 3/2 in each direction) leaves these features completely
unchanged. The onset occurs near Re = 300 and the widening progresses
at a rate which can be determined accurately and which far exceeds
the one predicted by available asymptotic models.

The flow fields in figures 10 and 11 were obtained from a 131*21
grid in the z-plane with

210

(11) 5; f i/l? , i=O,l, . . . ,130

(15)
3j

="<y+ (l-M)Sj, <j = j/18 , j=O,l, . . . ,20 , K=O.15

This places the right boundary at a distance 115.4 from the center of
the cylinder. Preliminary tests involving moving this and the top
boundaries in and out suggest that they are sufficiently far out with
the present choice of grid. Figure 4 showed part of this grid.

The major open questions at the moment are:

Physically:

1. Will the wake keep on growing?

2. Are there any other branches of solutions (bifurcations
etc.)?

Numerically:

1. Is there any alternative to Newton's method which still
possesses a reliable rate of convergence?

2. Is there any faster way than Gaussian elimination to solve
the linear system in Newton's method?

At present, the numerical questions are wide open and of
fundamental importance to many other applications as well. Current
numerical methods together with vector computers like the Cyber 205
probably form sufficiently powerful tools to settle conclusively the
physical questions raised here.

211

2

0

/

Fornberg (1980)///

Schennikov (1974)

0
I I I I I I I I I I I I 20 40 60 80)

100 120
Reynolds number

Figure 1. Length of wake brhble for low Reynol.ds numbers according to solne diFFerent calculations.

/ \ end.

Figure 2. Schematic illustration of free streamline and
the Prandtl-Batchelor models.

213

/---
- 1

I
I
I
I

complex x-plane

6 M
complex z- plane
z=[+iT

Figure 3. Conforma1. mapping of computational region.

-1 i I I _---- I _-we I ! ! , , , ,

Part near cylinder of computational grid.

-.20

-.30

-.I0

-.40

Figure 5. True differenke between streamfunction and free stream compared with
Oseen approximation for Re- 200.

216

r
----- -----a --

I
Lt hree image regions ------------ --

computational region

---A -- --- ----- J

I:j g:llrc 6. Typical vcjrLi~‘i ty field in domplex z-plane.

X

$1

.

+2
.

$3
.a

.

.

.

.

.

h-l

.

%J

--

Y

.

&2
.

:
.

:
.

:

:

:

.a

%k

Res.
d-et

I;igclre 7. Linear system in Newton’s method.

\
\:

.

\\.

\
:

.

\
:

.
-. : -_ *.

*. : . . *. .

-.

\
_------w- --

.-- -A- _--- ---

X

6
12
$3 : ; :
‘N-l
.

--

Y
.

.

:
:
.

:
.

dN-

Figure 8. Modified linear system.

Line with slope dR d1.0.17,'

6C

5C

4c

3c

20

IO

A

>-

F. V. Smith (1979)/

/
/

I-

I-

Fornberg (1980)
I-

/ Allen 81 Southwell (1955)
--

/ I

I I I I
OOl 100 200 300 400 500

Remolds number , - --

Figure 9: Length of wake bubble for different Reynolds numbers.

220

I 2 5 IO 15 20 25 30 35 40

I00

200

-

400

Figure 10: Streamlines (values$=-1.4, -1.2,...,.8, l., 2.,-J., 9.) for different Reynolds numbers.

yjiEg=
+ ’ 1 I I I I I

I 2 5 IO 15 xl 25 30 35 40

I 2 5 IO I5 20 25 30 35 40

N
10
N

I 2 5 IO I5 25 30 35 40 45 50 55

I 2 5 IO 15 20 25 30 35 40 45 50 55

-

’ I2 5 IO 15 20 25 30 35 40 45 53 55

Figure 11: Contours of constant vorticity (values w=-12., -8., -4., -2., -l., -.8, -.6, -.4, -.2, -l.,
0 - 1 a, , .2, .5) for different Reynolds numbers.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

IO.

11.

12.

Allen, D.N. de G. & Southwell, R.V.: Relaxation methods applied
to determine the motion, in two dimensions, of a viscous fluid
past a fixed cylinder. Quart. J. Mech. Appl. Math. 8 (1955) pp
129-145.

Batchelor, G.K.: A proposal concerning laminar wakes behind
bluff bodies at large Reynolds number. J. Fluid Mech. 1 (1956)
pp 388-398.

Brodetsky, S.: Discontinuous fluid motion past circular and
elliptic cylinders. Proc. Roy. Sot. A 102 (1923) pp 542-553.

Dennis, S.C.R.: A numerical method for calculating steady flow
past a cylinder. Proc. 5th Int. Conf. on Numerical Methods in
Fluid Dynamics (Ed. A.I. van de Vooren SC P.J. Zandbergen),
Lecture notes in Physics, Springer, vol 59 (1976) pp 165-172.

Dennis, S.C.R. & Chang, G.Z.: Numerical solutions for steady
flow past a circular cylinder at Reynolds numbers up to 100. J.
Fluid Mech. 42 (1970) pp 471-489.

Fornberg, B.: A numerical study of steady viscous flow past a
circular cylinder, J. Fluid Mech. 98 (1980) pp 819-855.

Gushchin, V.A. & Schennikov, V.V.: A numerical method of solving
the Navier-Stokes equations. Zh. vychist. Mat. mat. Fiz. (1974),
pp 512-520.

Imai, I.: On the asymptotic behaviour of viscous fluid flow at a
great distance from a cylindrical body, with special reference
to Filon's paradox. Proc. Roy. Sot. A 208 pp 487-516.

Keller, H.B.: The bordering algorithm and path following near
singular points of higher nullity. Submitted to SIAM J. Sci.
Stat. Computing.

Peregrine, D.H.: Note on the steady high-Reynolds-number flow
about a circular cylinder. School of Mathematics, University of
Bristol, Report No. AM-81-04 (1981).

Roache, P.J.: Computational fluid dynamics. Hermosa Publishers,
Albuquerque (1976)

Saffman, P.G. & Tanveer, S.: Prandtl-Batchelor flow past a flat
plate with a forward facing flap. Manuscript in preparation
(1983).

13. Smith, F.T.:Laminar flow of an incompressible fluid past a bluff
body: the separation, reattachment, eddy properties and drag. J.
Fluid Mech. 92 (1979) pp 171-205.

14. Smith, F.T.: Comparisons and comments concerning recent
calculations for flow past a circular cylinder. J. Fluid Mech.
113, pp 407-410.

15. Ta, P.L.: Etude nume'rique de l'&oulement d'un fluide visqueux
incompressible autour d'un cylindre fixe ou en rotation. Effet
Magnus. J. M&z. 14 (1975) pp 109-134.

16. Takami,H. & Keller, H.B.: Steady two-dimensional viscous flow of
an incompressible fluid past a circular cylinder. Phys. Fluids
Suppl. II pp 51-55.

224

NAVIER-STOKES SIMULATION OF HOMOGENEOUS
TURBULENCE ON THE CYBER 205

C. T. WU,
J. H. FERZIGER,

AND
D. R. CHAPMAN

STANFORD UNIVERSITY
STANFORD, CALIFORNIA

AND

R. S. ROGALLO
NASA AMES RESEARCH CENTER

MOFFETT FIELD, CALIFORNIA

NAVIER-STOKES SIMULATION OF HOMOGENEOUS TURBULENCE
ON THE CYBER 205

C. T. WU, J. H. FERZIGER, AND D. R. CHAPMAN

STANFORD UNIVERSITY, STANFORD, CALIFORNIA

AND

R. S. ROGALLO

NASA AMES RESEARCH CENTER, MOFFETT FIELD, CALIFORNIA

ABSTRACT

A computer code which solves the Navier-Stokes equations for three-dimensional,
time-dependent, homogeneous turbulence has been written for the Cyber 205. The
code has options fo both 64-hit and 32-hit arithmetic. With 32-hit computation,
mesh sizes up to 64 5 are contained within core of a 2 million 64-hit word memory.
Computer speed timing runs were made for various vector lengths up to 6144.
With this code, speeds a little over 100 Mflops have been achieved on a 2-pipe
Cyber 205. Several problems encountered in the coding are discussed.

1. INTRODUCTION

Turbulent fluid motion is common to many branches of engineering and science.
Since turbulence phenomena are highly nonlinear, they are not amenable to classi-
cal analytical approaches. Consequently, turbulence predictions are generally
based on semi-empirical models. Experiments which generate model information
are expensive, but are needed because current models are not generally accurate
enough for engineering purposes. Detailed simulations of turbulent flows can help
complement laboratory data. Direct numerical simulations of turbulent flows are
more accurate than current semi-empirical computational methods and can be
used to both generate physical understanding and to improve the models. In these
simulations, turbulent flows are directly computed from the Navier-Stokes equa-
tions. Computations of this type are necessarily three-dimensional and time-
dependent; they require a large number of grid points, and thus, long computation
time. The Cyber 205 computer appears ideally suited for efficient numerical
simulations of this type. Exploration of the use of the Cyber 205 for direct
numerical simulation of turbulence is a principal objective of this work.

The basic code was written by one of the authors (RSR). It was modified to take
advantage of the 205 compiler’s automatic vectorizing capability. Vector syntax
and special functions were applied to the code segments which could not be auto-
matically vectorized. Finally, machine language instructions were used for the
parts of the code that existing compiler could not handle.

227

In the next section, a description of the particular problem to be solved is given.
In Section 3, the numerical methods used are discussed. This is followed by a brief
description of the Cyber 205 at Colorado State University. The construction of
long vectors is discussed in Section 5. In Section 6, performance data obtained to
date are presented, and in Section 7, problems encountered are described. A typi-
cal simulation of homogeneous isotropic turbulence is presented in Section 8. In
the final section, a brief statement of conclusions is presented.

2. PROBLEM STATEMENT

Homogeneous turbulent flows, of which there is a considerable variety, can be
simulated numerically at low Reynolds number without using any turbulence
model. In the flows we will consider, the computational domain contains a fixed
mass of fluid within a rectangular parallelepiped, the opposing sides of which can
move inward or outward with time. Thus, the cases which can be computed are
quite varied: decaying homogeneous isotropic turbulence is generated if all six
sides are stationary; turbulence undergoing uniform compression (or expansion) if
all three pairs of sides move inward (outward) at same rate; turbulence undergoing
one-dimensional compression, if one pair of sides moves inward; or turbulence
undergoing plane strain if one pair of sides moves inward at the same rate a
second pair moves outward, while th.e. third pair remains stationary. Isotropic
turbulence has been computed before, but turbulence undergoing compression or
expansion has not. The compression cases are of interest, for example, in internal
combustion engine modeling and in the interaction of turbulence with a shock
wave.

It will be assumed that the Mach number is sufficiently small that the fluid is
compressed uniformly in space, so that the fluid density depends only on time.

The governing Navier-Stokes equations for a fluid of uniform viscosity and uni-
form density in space are:

where ~1. 1 2 P , v , and t are fluctuating velocity components, fluctuating pressure,
kinematii viscosity and time respectively. The summation convention is implied.
This set of governing Navier-Stokes equations allow us to simulate homogeneous
turbulent flows in Lagrangian coordinate system that moves with the mean flow.
Coordinate transformation tensor Bij is determined by:

Note that mean strain rate tensor,%, j is zero and Bij=sij for isotropic homo-
geneous turbulence.

228

Periodic boundary conditions are applied in all three space directions. The
velocity field is initialized to an isotropic state that satisfies continuity and has a
given energy spectrum which approximates that of experimental isotropic tur-
bulence.

3. NUMERICAL METHOD

The spectral method is used to compute all spatial derivatives. This method,
which uses FFT’s, is good for problems with periodic boundary conditions and has
very high accuracy. To avoid aliasing ,in the nonlinear terms, both the truncation
and phase shifting techniques are used.

A second order Runge-Kutta method is used to advance the solution in time.
Thus, all spatial derivatives need to be computed twice each time step. The time
step was chosen small enough that no significant error is produced. It was deter-
mined by increasing the step size until the error was approximately 1 percent over
the full integration period.

4. THE CYBER 205

The Cyber 205 we are using is ty Colorado State machine with 2-pipes and a 2
million 64-bit word fast memory. QTE Telenet has been used for data transfer
between Stanford and CSU. We have found that both are reliable, convenient to
use, and have provided satisfactory service so far.

Figure 1 shows the performance for add/multiply as function of vector length.
The asymptotic performance which requires maximum vector lengih (65535) is 100
Mflops for 64-hit arithmetic and 200 Mflops for 32-hit arithmetic.

It is obvious that the performance improves with vector length. Vector length
1000 (64-hit case) or 2000 (32-bit case) is required to reach 90 percent of the
asymptotic performance. Constructing a code which uses long vectors is there-
fore important if maximum performance from the machine is to be obtained.

5. DATA MANAGEMENT

Based on the “longer vector gives better performance” philosophy, we chose to do
the Fourier transforms in parallel. This will be explained in detail later.

In Figure 2, NX, NY, and NZ are the number of mesh points in the x, y, and z
directions respectively; MY and MZ are called “pencil sizes”.

On the first sweep, MZ x-y planes of data are Fourier transformed in the y direc-
tion in parallel. The transform length is NY, but by doing them in parallel, a
vector length of NX/2*MZ*3 is achieved; the factor 3 is due to the simultaneous
processing of three velocity components, and the factor l/2 is due to only half of
the modes are needed in wave space to represent a real function in physical space.
To accomplish this, it is useful to lump every dependent variable into a single big
array. The main array in our code is DATA(NX/2,NY,NZ,4,2); the dimensions
represent x, y, z, a dependent variable index, and real and imaginary parts of a
complex number.

229

2oc

1oc

c

VECTOR ALILWMUL TIPL Y MFLOP RA TE
. ,rrmr . . . I I , , , , I I 1 I,,,, I r,,#-f-m c

VECTOR L ENG TH

Figure 1

- -
L

COMPUTATIONAL 130X
Figure 2

On the second sweep, MY x-z planes are processed. Fourier transforms in z and x
directions are done on this sweep. The vector lengths are NX/2*MY*3 and
NZ*MY*3 respectively.

A Cyber 205 vector is defined as a contiguous set of memory locations. Since the
two sweeps are in different directions, an array transp:. ;t? has to be done between
sweeps and within the second sweep in order to keep processed data in a
contiguous set of memory locations. The transpose is done by using gather
instructions. The gather instruction puts array elements which are at various
locations into a contiguous set of memory locations. An index vector is needed to
pick up desired elements. Q8VGATHR function (64-hit) or Q8VXTOV subroutine
(32-hit) is used to do the transposing. As the array gets bigger, so does the index
vector length, and an appreciable amount of overhead working space is needed. In
the 643 (32x16) run, the index vector has 17,408 elements.

6. COMPUTER PERFORMANCE

The performance data obtained to date, based on a hand count of the number of
operations per time step, are presented in Table 1. The mesh size is given in
column 2 (each node requires 7 words of data storage). The pencil size is given in
column 3; this, together with mesh size, determines the vector length shown in
column 4. The computational precision is given in column 5, the CPU time in
column 6., and the CPU computation rate in column 7. The I/O time per step in
seconds is meaningful only for runs with virtual memory paging. Explicit I/O
would reduce I/O time considerably, but we have not yet attempted to use explicit
I/O.

Figure 3 shows computation rate as function of vector length for our code on the
2-pipe CSU Cyber 205. It approaches an asymptote as vector length increases.

Comparing Runs 3 and 4, and Runs 5 and 6 in Table 1, it is found that the CPU
time for a 32-hit (half) precision run is 60 percent of that for the corresponding
64-hit (full) precision run. We kept track of the timing in the transpose part of
the code and found an interesting fact. In full precision runs, the transpose takes
15 percent of the CPU time; 85 percent of the CPU time is spent in floating point
operations. In half precision runs, due to the lack of a half precision gather
utility, the transpose takes the same amount of time as in full precision runs,
while the floating point operations require only half of the full precision CPU
time. Consequently, for half precision run, the transpose takes 25 percent of the
total time.

Detailed timing from Run 8 shows that 51 percent of the CPU time is spent in the
FFT subroutine, which contains 78 percent of the floating point operations. In
other words, the FFT operates at 157.6 Mflops. The remaining 22 percent of the
floating point operations are executed at 95 Mflops due mainly to shorter vector
lengths and IF statements.

7. PROBLEMS ENCOUNTERED

Runs 7 and 8 of Table 1 require 3.5M words storage, and hence, do not fit within
the 2M core memory at CSU with full precision. Thus, we must use 32-hit com-
putation for efficient use of the CSU Cyber 205. Half-precision computation is
sufficiently accurate for this code, and twice the operating speed is achieved.

232

TABLE l.--PERFORMANCE OF CYBER 205 AT CSU
(2 PIPES WITH 2M 64-BIT WORD)

h,
W
W

I I I I I I I
IE

MEMORY ZP (M woRDs) COMMENTS
\ NUlJI2.b I \lN J2P.L) \bLL. I \bLL.)

8X8X8 8x8 192 64 0.014 23.5 0.02 in core

32x32~32 4x4 384 64 0.690 31.0 - 0.30 in core

32x32~32 32x32 3,072 64 0.399 53.6 - 0.69 in core

32x32~32 32x32 3,072 32 0.240 89.2 0.69 in core

64x64~64 16x16 3,072 64 3.378 59.6 56.6 2.70 paging

64x6 4x64 16x16 3,072 32 2.022 99.6 - 2.70 in core

64x64~64 32x16 4,608 32 1.980 101.7 - 3.47 in core

64x64~64 32x32 6,144 32 1.914 105.2 8.7 3.52 paging

200

1OC

c

-I 32 Bit

VEC TOR LENGTH
Figure 3

Since there is no compiler avaipble -yet for half precision gather/scatter4 calls,
we have to use special Q8 calls (machine instructions) to get the half precision
code to compile properly on the CSU Cyber 205; the special Q8 instructions exe-
cute at full precision speed. Mr. Herbert Rothmund of CDC Sunnyvale was most
helpful to us in providing these utilities.

It is apparent that the I/O rate is not balanced with the CPU time. The reason is
that the CSU Cyber 205 has only two channels to transfer data between fast
memory and disk and they are inherently slow. Solid-state backing memory (or
equivalent) would speed u% the data transfer rate. For our problem, faster I/O
would allow us to go to 128 mesh size.

Since December 1982, three different compilers have been used: cycles 201109,
L575, and 575B. Cycle 20 1109 did not have the half precision feature. Cycle
L575 had half precision but lacked some automatic vectorization features. Cycle
575B, the most recent version, does not have gather/scatter in half precision.
Further improvements are needed if users are to get optimum performance from
this machine.

8. SIMULATION OF ISOTROPIC HOMOGENEOUS TURBULENCE

A typical simulation of homogeneous isotropic turbulent flow is presented in this
section. Figure 4 shows the time history of the three-dimensional energy spec-
trum from initial time step to 300 time steps. Figure 5 shows the 3-D spectra of
the components of the turbulent kinetic energy at time step 300. The flow is
slightly anisotropic at low wavenumbers. This is due to the small number of
modes at low wavenumbers.

All of these resul +s are in excellent agreement with both experiments’ and pre-
vious simulations. Thus, we are confident that the code is performing satis-
factorily and we will proceed to the simulation 9f compressed flows. The code
presently runs at 1.9 second per time step for a 64 mesh on the 2-pipe Cyber 205;
this compares with 5 seconds for the same type of code on the CRAY-1S in
VECTO RAL language.

9. CONCLUSION

In summary, we have written, debugged, and tested a code for solving the Navier-
Stokes equations and for computing various turbulence statistical quantities. Mos,J
of the operations are readily vectorized, and 100 Mflops has been obtained for 64
mesh size in-core runs on a 2-pipe Cyber 205. The major problems encountered so
far are concerned with the lack of compiler utilities, such as half-precision com-
piling capability for transpose operations.

The program works well and has been validated for homogeneous isotropic tur-
bulence. The code will next be used to help develop turbulence models for com-
pressed flow in engines.

235

3-D ENERGY SPEC TRUI
I I I I I,.. I

IU VII 1 I I I I a I I 1 1 I

10° 10’
WAVE NO.

Figure 4

-2
10 :

1 C3:

1 o-4-

WAVE NO.
Figure 5

ACKNOWLEDGMENTS

This work was supported by Control Data Corp. under project No. 828302. The
authors would like to thank Mr. Herb Rothmund of CDC Sunnyvale, Mr. Art
Lazanoff, Ms. Jeanne Adams and liaison staff of Colorado State University, and
Dr. Nagi Mansour for their important contributions to this work.

NOMENCLATUZZE

Bij

MY

MZ

NX

NY

NZ

P’

t

‘i,j
U. 1

X

Coordinate transformation tensor

Pencil size in Y-direction

Pencil size in Z-direction

Number of mesh points in X-direction

Number of mesh points in Y-direction

Number of mesh points in Z-direction

Pressure fluctuations

Time

Mean strain rate tensor

Velocity fluctuations in i-direction

Space coordinate

Y Space coordinate

6:j

-P

Space coordinate

Kronecker delta

Kinematic viscosity

238

REFERENCE

1 RogaIlo, R. S., “NumericaI Experiments in Homogeneous Turbulence,” NASA
TM81315, September 1981.

2 “Guide to Vector Processing Services,” CSU Computer Center and the
Institute for Computational Studies, October 1982.

3 Kascic, M. J., Jr., “Vector Processing on the Cyber 200,” Workshop I, CSU,
December 1982.

4 “CDC Cyber 200 Fortran Version 2 Reference Manual,” Control Data Cor-
poration, November 1981.

5 “CDC Cyber 200 Model 205 Computer System Hardware Reference Manual,”
Control Data Corporation, March 1981.

6 Comte-BeIIot, G., and Corrsin, S., “Simple Eulerian Time Correlation of
Full- and Narrow-Band Velocity Signals in Grid-Generated Isotropic’ Tur-
bulence,” J. Fluid Mech. (1971), Vol. 48, part 2, pp. 273-337.

7 Shirani, E., Ferziger, J. H., and Reynolds, W. C., “Mixing of a Passive Scalar
in Isotropic and Sheared Homogeneous Turbulence,” Rept. No. TF-15,
Thermosciences Division, Department of Mechanical Engineering, Stanford
University, Stanford, Calif. May 1981.

239

EFFICIENT SPARSE MATRIX MULTIPLICATION
SCHEME FOR THE CYBER 203

JULES J. LAMBIOTTE, JR.

NASA/LANGLEY RESEARCH CENTER

HAMPTON, VIRGINIA

Efficient Sparse Matrix Multiplication Scheme
for the CYBER-203

Jules J. Lambiotte, Jr.
NASA/Langley Research Center

Hampton, Virginia

Abstract

Many important algorithms for solving problema in linear algebra require

the repeated computation of the matrix-vector product b = Ax where A is

symmetric and sparse. Examples are the conjugate gradient and Lanczos

methods.

This work has been directed toward the development of an efficient

algorithm for performing this computation on the CYBER-203. The desire to

provide software which gives the user the choice between the often conflicting

goals of minimizing central processing (CPU) time or storage requirements has

led to a diagonal-baaed algorithm in which one of three types of storage is

selected for each diagonal. For each storage type, an initialization sub-

routine estimates the CPU and storage requirements based upon results from

previously performed numerical experimentation. These requirementa are
adjusted by weights provided by the user which reflect the relative importance

the user places on the two resources.

The three storage types anployed were chosen to be efficient on the

CYBER-203 for diagonals which are sparse, moderately sparse, or dense:

however, for many densities, no diagonal type is most efficient with respect

to both resource requirements. The user-supplied weights dictate the choice.

Introduction

Many of the important numerical techniques used today to solve linear

equations require repeated computation of a symmetric matrix times a vector.

Examples are the conjugate gradient method, with all its variants, for solving

243

simultaneous linear equations (refs. 1 and 2) and the Lanczos algorithm for

eigenvalue and eigenvector extraction (ref. 3). These methods are

particularly attractive when the matrix is sparse since, unlike direct

methods, they do not require storage of the entire matrix. The matrix is only

used to multiply a vector and to do this one only needs to know the nonzero

elements and their position within the matrix.

The primary objective of this work has heen to develop software for the

CYBER-203 that provides an efficient means for computing b = Ax when A is

an n x n, symmetric, sparse matrix.

Because use of vector hardware instructions on a vector processor has

very definite implications about the storage, a user's desire to minimize both

the required central processing unit (CPW) time and the total storage needed

to represent A are often conflicting goals. Thus, a more specific objective

of the work has been to design the software so that it provides alternative

storage/computational procedures for the matrix A and automatically selects

the procedure which best reflects the users relative concerns about minimizing

the two resources.

These objectives have led to the development of a diagonal-based storage

and computation scheme in which a preprocessing subroutine, OlPACT, chooses

one of three storage methods for each diagonal using CPU and storage estimates

and user-provided resource weighting information. The subroutine, CMXV, can

be called repeatedly to compute Ax using the compact form of matrix A.

Subsequent sections of the paper will describe the relevant CYBER-203

instructions used, the diagonal-based algorithm with the tradeoffs between the

methods, a description of the implementation used, and results for several

sparse matrices.

244

CYBER-203 Characteristics

The CYBER-203 at Langley Research Center is a vector processing computer

capable of producing 50 million floating point results (64 bit) for a vector

addition and 25 million for a vector multiplication. It has one million words

of bit addressable central memory in a virtual memory architecture.

The high CPU rates are achieved by operations on long vectors whose

components, by definition, are consecutively stored in memory. However, if

vector lengths are short (say, 50 or less), the fast scalar capability makes

serial computation superior.

In addition to the usual arithmetic operations (+, -, l , and +I, several

nontypical hardware instructions exist which proved useful in this work.

These were the vector compare, compress, expand, and bit count. Figure 1

demonstrates their use.

245

3 2 0 014 0 2

.NE.

o*o 0 0 ojo'o

,-> 11 11 10 10 11 10 Ill- B

i
Bit Count (B) = 4

*broadcast 0 actually used

(a) Compare vector not equal to 0; result to bit vector, B; count "on" bits

in B.

3200402

1
Compress by --> [q-q-p-j

11 0 0101

(b) Compress vector by bit vector.

3 2 4 2 T
Expand by 3200402

11 0 010 1

(cl Expand compressed vector by bit vector.

Figure 1. CYBER-203 nontypical vector instructions.

246

Diagonal-Based Matrix Multiplication

It is possible to describe the multiplication process b - Ax for a

matrix A in terms of elements of each diagonal. Let A(A) denote the

P superdiagonal (also the Qth subdiagonal since A is symmetric) and let

A+) be the k* component. That is, &k(g) = ak,k+E = ak+ll,k' The procedure

for computing, b = Ax for the nxn matrix A is

bk f qtCo1 5 k = 1,2,...,n.

For 11 = 1,2,...,n-1.

bk f bk + qtca) xk+lc for k - 1,2,...,n-L (11

bk+L + bk+E + %('I "k for k - 1,2,...,n-L (21

End F

Note that if A is banded, 11 need only go from 1 to the bandwidth B

and that if any diagonals are identically zero, they can tm easily identified

and all computation for 'them in (1) and (21 can be omitted,

The diagonal-based scheme has been selected as the foundation for this

work for several reasons:

a. Nonzero structure of real problems - Many matrices arising from finite

difference or finite element formulations naturally lead to a sparsity

pattern in which most of the nonzeros lie along a few of the diagonals.

The 5 diagonal matrix arising from central differencing of Poisson's

equation is an extreme example. Of course, there the pattern is so pre-

dictable that special storage techniques are not needed; but for irregular

grids, or more complex equations with more complicated differencing, the

sparsity is not so easily specified. This is especially true in finite

element formulations where one of the strengths of the method is the

ability to use nonuniform elements.

247

.._. --. .

b. Vectorization - The n - 11 multiplications and additions in equations (1)

and (2) can be carried out by vector operations of length n - 11.

C. Symmetry of diagonals - 'Ihe a th subdiagonal is also the P super-

diagonal. Since equations (1) and (2) are identical in form, the storage

and computation most appropriate for the subdiagonal is also most appro-

priate for ,the superdiagonal.

Storage Tradeoffs

The vector computations implied in equations (1) and (2) assume A(111 is

available as a vector of length n - 11. However, if the diagonal is rela-

tively sparse, one might not want to store the entire diagonal with all its

zeros. In fact, if the diagonal is very sparse, neither vector storage nor

vector computation is likely to be very efficient.

Described below are three types of diagonal storage and their associated

computation to execute equations (1) and (2).

Full Vector (Type 1) - Here the entire diagonal is stored including any

zeros. Vectors of length n - h are used. This mode will be most

efficient when A(111 is very dense.

Compressed Vector Plus Bit Pattern (Type 2) - Here only the nonzeros are

stored along with a bit vector to give positional information within the

diagonal. he computation is identical to that with type 1 diagonals

after an expand is performed to generate the full diagonal A(t). The

extra expand makes type 2 CPU requirements always exceed type 1, but the

storage can be considerably less.

Compressed Vector Plus Row Pointers (Type 3) - Here the assumption iS that

A(a) is so sparse that it will be inefficient to expand the compressed

vector. Equations (1) and (2) are executed serially making use of the row

indices stored for positional information.

248

Figures (2) and (3) show the CPU and storage requirements for a diagonal

of length 1000 as a function of density. A comparison of the two figures

shows that, unfortunately, one cannot identify intervals of density where a

particular diagonal type is most efficient with respect to both resources.

For instance type 3 CPU is least for d C 0.11 but has a greater storage

requirement than type 2 for d > 0.02. Even in those regions where one

diagonal type is most efficient for both resources (typp 1 for very dense and

type 3 for very sparse), the boundaries of these regions vary with the length

of the diagonal.

Since the minimization of both resources is frequently not possible, and

since different users may attach di fferent importances to the two resources,

it was decided to let the user influence the storage selection through

resource weighting factors. To implement this the initialization subroutine,

IMPACT, does the following for each diagonal:

(1) Estimates the CPU and storage requirements for each of the three candidate

types.

(2) Applies a user-supplied weight to compute the weighted resource require-

ment for each method.

(3) Selects the storage type that minimizes the sum of the two weighted

resource requirements.

That is, denoting the

diagonal type by Sj and

predicted storage

C. 3 respectively,

and CPU requirements for the jth

their'minimum by s, and cm, the

users specified weighting by sw and cw. then the normalized and weighted

resource, r., for the 3 jth diagonal type is computed as

r. = 5s ,=a
' 'min w

++c W j = 1,2,3
min

Subroutine IMPACT computes rj and selects the diagonal type which yields the

minimum value of r.

249

9al- TYPE 3

TIME, 6oo _
u sets

/-
lYPE 2

300- Y
0 .2 .4

DENd
.8 1.0

FIGURE 2, CPU TItIE FOR DIAGO,'IAL HITH L&'iGTH 1,000.

1600,

1200

STORAGE

800

0 .2 .4 .6 .8 1.0
DENSITY

FIGURE 3, STORAGE REQUIREfIE!iTS FOR DIAGONAL WITH LENGTH 1,000,

250

For this.approach, aPACT must be able to estimate Sj and c. 3 for

all n and d. The storage estimates are easily made in terms of a diagonal

of length n having z nonzeros.

s1 = n

s2 =z+w

s3 = 22

where w is the least number of 64-bit words needed to hold n bits.

The CPU estimates were obtained by timing the computation for a range

of n and density d. For:type 1 and 3 diagonals, single formulas were

obtained, but the complexity of the expand used in type 2 diagonal computation

required a table of values. The time in.microseconds to perform the computa-

tions implied in equations (1) and (2) for a single diagonal can be estimated

by

c1 = 29 + 0.122 n

C2 = See Table I

C 3 = 7 + 1.74 2

Since these values are used only in a selection process, their accuracy

to a percent or two is sufficient.

Table I.- Type 2 diagonal CPU times (microseconds) as a function

T
n I-

100

500

5000

of diaqonal length n and density d.

0.

53

123

901

d

.l .2 .4 .6 .a 1.0

53 53 57 60 63 68

123 124 141 160 176 197

901 918 997 1134 1280 1429

251

Implementation

The matrix is received in subroutine 03PAC!C in its expanded form as an

N by IB array. Each of the IB diagonals is treated individually as the

compact representation, array C, is formed. C is a linear array in which

the pertinent data for the Lth diagonal is stored behind that for the L - lst

diagonal. As illustrated in figure 4, this can be, for types 1, 2, or 3

respectively, either the entire diagonal, the nonzero bit pattern for the

diagonal followed by the nonzeros, or the nonzeros and index data. A vector

compare with broadcast zero generates the bit pattern and provides the number

of nonzeros and density. If the weighting procedure determines that the

diagonal should be type 2 or 3, a compress is performed. In addition, two

integers for each diagonal are stored in a separate array. The first identi-

fies the diagonal type and the second the number of nonzeros in the diagonal.

The subroutine returns to the user the CPU and storage estimates for the

user provided weights. In addition the estimates for combinations sw = 1,

cw =O and ~~-0, s = 1 are retwrned to aid the user to adjust his weights

in subsequent computations.

252

11 - 1st
diagonal

lIth diagonal

A(111 = [a 3 0 0

I

11- lst
diagonal

B t-64 bits B-e
8
3
1

~

lath diagonal

2

21

B= [1100110...01

C

64 bits

Figure 4 - Storage for A(111 (n - a = 6).

Results

Results from two test matrices are presented here to demonstrate the

effect and control the user has on the matrix storage and computational

requirements by giving the statistics for different combinations of sw and

CW=
Refer to Tables II and III.

Case 1 - This is a randomly generated matrix with 400 equations and a

bandwidth of 21. The densities are approximately uniformly distributed

between 0. and 1. The average density is 55.7%. The storage selection that

minimizes the CPU time (1.57 msec; mostly type 1) yields the largest storage

requirement. The selection to minimize storage (4713 words; mostly type 2)

yields the largest computation time.

253

Case 2 - This is a sparse matrix resulting from a finite element formula-

tion with triangular elements and 3 degrees of freedom at each node. The

matrix has 1086 equations, a bandwidth of 81, and an average density of 7.8%.

Most of the diagonals are sparse. Of the 81 diagonals, 57 are less than 5%

dense and approximately half of the nonzeros are on the four diagonals closest

to the main diagonal. Because of the relatively few dense diagonals, most of

the diagonals are type 2 (to minimize storage) or type 3 (to minimize CPU).

Both examples demonstrate the conflicting goals of minimizing both

resources. They also show that use of the weighting factors can give the user

a rather wide range of resource distributions. For instance, in the second

example a weighting of 1 for cw leads to a CPU time that is minimum but a

storage requirement which is 1.73 times that if one set sw = 1. However,

setting sw = 1 yields a CPU time which is 2.6 times the minimum. A reason-

able middle ground occurs when sw = cw = 0.5. In this case, the CPU is 1.09

times the minimum and the storage is 1.2 times the minimum.

254

Table II.- Case 1; 21 jc 400 random matrix.

Weights Resources Diagonal Selection

--__
-I-----’

I
C” SW

Storage 2 3
CPU

(Sets)

.00271

5481

6053

Table III,- Case 2; 81 x 1086 finite element matrix.

Weights Resources Diagonal Selection

cW

0

.3

.5

-7

1

sW

1

.7

.5

.3

0

CPU
(Sets)

.01680

CPU
(Sets)

.01680

.00800

.00703

.00682

.00646

.00800

.00703

.00682

I .00646

Storage

8032

9200

9622

9820

13883

2

72 8

17 61

8

4

0

70

74

73

3

255

This paper has described a computational and storage algorithm for sparse

matrix multiplication on the CYBER-203. The multiplication is performed using

diagonals of the matrix as the candidate vectors since this is where nonzero

patterns predominate in many scientific applications. Three types of diagonal

sparsity patterns are identified (roughly speaking, either dense, moderately

sparse, or sparse) and storage and computational procedures developed for

each.

Since, for most densities, no single diagonal type minimizes both storage

and CPU requirements, an initialization subroutine selects the most

"efficient" type for the diagonal based on estimated resource requirements and

user-provided weights which indicate the relative importance the user attaches

to each resource.

Etxamples are given which illustrate that, for a given matrix, the weights

can be used to achieve minimal CPU time (at the expense of storage) or minimal

storage (at the expense of CPU time) or some compromise between the two.

References

1. Hestenes, M. R. and Steifel, G., "Methods of Conjugate Gradients for
Solving Linear systems", NBS Journal of Research, 49, 1952.

2. Kershaw, D. S., "The ICCG Method for the Iterative Solution of Systems of
Linear Equations", J. Computational Physics, 26 (19781, pp. 43-65.

3. Wilkinson, J. H., The Algebraic Eigenvalue Problem, p. 388, Oxford
University Press (Clarendon), London and New York, 1965.

256

I -

MODELING MATERIAL FAILURE WITH
A VECTORIZED ROUTINE

S. M. CRAMER
AND

J. R. GOODMAN

DEPARTMENT OF CIVIL ENGINEERING
COLORADO STATE UNIVERSITY

FORT COLLINS, COLORADO

.

The canputatlonal aspects of modeling material failure in structural wood

members are presented with particular reference to vector processing aspects.

Wood members are considered to be highly orthotropic, I nhomogeneous, and

discontlnuour due to the complex mlcrostructure of wood materrat and the pres-

ence of natural growth character fstics such as knots, cracks and cross gral n

In wood members. The slmulatlon of strength behavlor of wood members is

accanpllshed through the use of a special purpose finite element/fracture

mechanics routtne, program STARW (Xrengtli Analysts Routfne for Wood). Pro-

gram STARW employs quadratlc ftnlte elements combined wlth singular crack tfp

elements In a ffnlte element mesh which accounts for the canplexltles Inherent

I n wooa structural members. The need to use a highly refined flnlte element

mesh to adequately model material behavior, results In the formulatlon of

tnousands of simultaneous equations which must be generated and solved repeat-

edly to model the nonlinear failure process which occurs. The aval labi I Ity of

the CUBER 205 at Colorado State Unlverslty has made lmplementatlon of program

STARW at the level described not only possible, but also relatively econanl-

cal. Vector processing techniques are employed in mesh generation, stlffness

matrix formation, slmultaneous.equatlon solution, and materlal failure calcu-

lations. .The paper addresses these techniques along with the time and effort

requlrernents needed to convert existing flnlte element code to a vectorized

lzed and nonvectorlted vers

rout

ion. Comparisons In execution time between vector

,I nes are prov I ded.

259

MODELING MATERIAL FAILURE WITH A VECTORIZED ROUTINE

s. w. Cramer J. R. Goodman
Research Associate Professor
Dept. of Clvll Englneerlng Dept. of Clvll Englneerlng
Colorado State Unlverslty Colorado State University
Ft. Coil Ins, Colorado Ft. Coil Ins, Colorado

M-QUZ

Accurate knowledge ot the strength of a structural member Is essentlal

lnformatlon to the deslgn engineer concerned with structural safety and effl-

clent material use. A means to predict material strength Is necessary, since

all materlals exhibit some varlablllty in strength and It is not feaslble to

pnyslcally test every structural member to determlne Its load carrying capa-

city. The sophlstlcatlon of strength predlctlon models have generally

advanced, not only with the dlscovery and reflnement of new computatlonal

methods, but also h ..h the Increase In computer capabllltles which enable

etflclent application of the new methods.

In the case ot wooa structural members, the current strength prediction

method is a highly approxlmate procedure based on empirIcal concepts from the

1930’s. This results In a strength predlctlon that Is relatively uncertain.

The current strength predictlon procedure Is based on the results of physical

tests because until now It has not been possible to mathematlcally model wood

member failure and ratlonally predict strength. The most obvious dffflcul-

ties; orthotropic material propertles, the presence of knots and associated

grain devlatlons, and the presence .of cracks from seasonlng and partial

material failure, can now be successfully modeled with program STARW (zrength

Analysl’s Routine for hood) (21.

The nature of the nonllnear failure modeling process, presents a cunputa-

tional problem of such a I arge magn I tude that It can not be efficiently

accomplished on computers that do not have the capacity of a CYBER 205. Pro-

gram STARW represents a case where modest effort In Invoking vector processing

syntax has not only made lmplementatlon of the program posslble, but has also

resulted In a relatively econcmlcal solutlon.

260

-

W OVFRVlFW ON;. ‘WlWUSA’ ’ Y MQREUNG WO(lDFR FAll ~JRF W1n-1 STABi

Program STARW uses two-dimensional orthotropic finite elements to model

behav

siie

or in the longitudinal-transverse plane of a loaded wood member. Ten-

oad is appl ed in the longitudinal direction as shown in Fig. 1. I

I I -I I

--

-

-

KNOT ASSOCIATED CROSSGRAIN

APPLIED STRESS /

Figure 1. Loaded Wood Structural Member
(Longitudinal-Transverse Plane)

A knot in a structural specimen of wood creates localized grain deviatlon

as indicated in Fig. 1. This grain deviation has an extremely important

etfect on stress distributions at locatlons near the knot (3). An I terat I ve

procedure to locate mesh coordinates corresponding to the grain deviation

around a knot is employed in program STARW: This procedure relates distortion

of wood grain around a knot to streamlines of laminar fluid flow around an

eliiptlcal object and has therefore been named the “flow-grain analogy” (4).

261

Utiilzing the flow-grain analogy, a representatlve finite element mesh is

autanatically constructed of eight node quadrilateral elements, six node trl-

angular elements, and eight node slnguiar elements. Since tangential elastic

stiffness of wood may be as little as l/20 of the longitudinal elastic stlff-

ness, all three types of finite elements are requlred to model different elas-

tic mater I a I behavior in the longitudlnai and tangential directions.

Appropriate elastic stiffness values for each element are automatically

assigned.

Singular elements are used to model material behavior around the tip of

cracks that form as the load on the member is Increased. These elements were

developed using theory fran linear elastic fracture mechanics (1). Experlmen-

tal investigations have indicated that cracks in structural lumber will usu-

ally form ana propagate along a grain Ilne.- Thus, cracks are modeled by pro-

gram STARW by wuntlpping @I the flnite element mesh along the material separa-

tion ana placing the singular elements arouna the crack tlp. A resulting fln-

Ite element mesh Is shown in Fig. 2. The wunzi pping” process and p I acement of

tne singular elements are pertormed automatlcally upon cue by the user when

the appropriate failure conditions are indicated In the program output.

262

Direction of Applied Strers

T T-T-trnf

I I
, I

I
I I III1 II 1

I II I I I

I I

c

I I

Knot
krack

four Singular Elements
Around the Crack Tip

Figure 2. Example Finite Element Mesh Inc luding Crack

The output directly calculated frcm each analys is is as follows:

1) Horizontal and vertical displacement at each node 1 n the mesh.

2) Stresses for each element, parallel-to-grain, perpendicular-to-

grain, and shear.

3) Stress Intensity factors resulting from the use of singular ele-

ments.

4) A failure summary that indicates to the user what appropriate

action should be taken to model the next step in the failure pro-

cess.

263

The stress intensity factors directly reflect the strength of the stress field

around the crack ti p. The stress intensity factors are canpared within the

program to a fracture criteria for structural wood members to determlne if the

existlng crack propagates at a given applled load. The element stresses are

compared to a failure crlterla for structural wood members to determlne if a

crack wlll form near the element under consfderatlon. The results of these

comparisons are expressed in the faliure summary.

Analyses are performed repeatedly with stress and stress intensity fac-

tors monltored at each step and compared wlthln the program logic to the

fracture/failure criteria. As the load on the member Is increased, more

cracking and materlal failure occurs. The user, based on the Information in

the failure sumnary and the overall stress picture, gfves the program the

necessary lnformatlon to model the successive step in the failure process. In

the future, as research progresses, program logic will be expanded to Include

the declslon making process the user currently makes based on the fallure sum-

mary. Failure may be continually modeled In this fashion until the member

unuer consideration has failed to the point where it cannot reslst an increase

in load. At thls point, the predicted strength Is real ited. In studylng the

may typlca I I y be performed before the

led diagram I of the failure model is

behavlor of a wood member, 30 analyses

member reaches its capacity. A simpl If

contalnea In Fig. 3.

264

--. -

INPUT INITIAL MRAMETERS

4

ARE APPLIED LOADS ULTIMATE STRENGTH
REALIZED

CHECK FAILURE/FRACTURE CRITERIA

Figure 3. Strength Predlction Model

FCTS AND IMPl lCATJDNS DF VPCTDR1’ATUU

For each analysis, program STARW pertorms f I ve general sets of cunputa-

tlons:

1) Generation of a sultable finite element mesh using the flow-grain anal-

ogy and an unzipping process to include cracks.

2) Formation of a set of simultaneous equatlons which may be 2000 to 5000

equations In length.

31 Solution of the simultaneous equations using Gauss eliminatlon.

265

-

4) Caicuiatlon and coordinate transformation of element stresses based on

the solution vector and the element grain angles.

5) CunpuTations with the failure/fracture criteria using element stresses

and stress intensity factors as input.

Routines included in Items 1 through 4 exlsted in limited form and were

executed for small problems on a CYBER 720 prior to application on the CYBER

205. Failure calculatrons In Item 5 and additional mesh generation capablli-

ties were added and designed specifically for use on the CYBER 205. After

compiler inauced vectorization proved to be Inadequate, in significantly

reducing execution time, It became apparent that it was essential to expli-

citly vec+orize selected portlons of the existing routines. At the same time,

it was not the primary goal of the project to expend unlimlted effort to

achieve tne maxlmum in vector processing, rather the goal was to produce a

powerf u I research tool that could be econanically implemented. The bulk of

the conversion (and execution time savings) were achieved with modest effort

after becanlng familiar with vector processing syntax.

To date, a means to vectorize the Iterative solution of the fluld mechan-

Its equations contained in the flow-grain analogy has not been establlshed.

Thls is not of great concern since, as in many finite element routines, mesh

generation does not account for a significant portion of the total execution

time. However, the unzipping of the finite element mesh to model cracks

involves, in part, a uniform renumbering of nodal points. This renumberlng is

easily accomplished with basic vector commands since nodal coordinates are

stored In vector form.

266

Formatlon ot the set of simultaneous equations can typically take from 5

to 50 per cent of total execution time In a unvectorlred flnlte element

analysis. In program STARW, a 16 by 16 element stiffness matrix must be con-

structed for each element and properly combined wlth other element stlffness

matrices to form the CoWflClent matrix (global stiffness matrix) of the

s Imu I taneous equations. Formatlon of the 16 by 16 matrlx Involves dot pro-

ducts OT vectors of length 16. Some tlme savings Is attal ned here through the

use of the CYBER @SOOT command even though the vector length Is rather small.

Solution of the simultaneous equations typlcally requlres 40 to 90 per-

cent of the total execution tlme of a finite element analysis. The 90 percent

figure Is not uncommon for large two-dImensIonal analyses. Therefore, I arge

time savings can be attalned by vectorlzing the solutlon algorithm alone. In

program STARW, Gauss elimlnatlon Is used to decompose the global stlffness

matr I x, followed by a back substltutlon to obtain the solution. For the prob-

lem unaer conslderatlon the stiffness matrix Is banded and synnnetrlc, and

therefore, only the upper diagonal half of the matrix Is stored. Furthermore,

If the global stiffness matrix Is stored In columns rather than rows, then

adJacent terms In a row of the global stiffness matrlx will be stored contlgu-

ously. Since Gauss elimlnatlon Involves operations of one row upon another,

by storing the matrix as described, each row will be a vector. wGatherw and

“scatter n vector formatlon commands are unnecessary. Gauss ellmlnatlon

Involves operatlons on the matrix rows In a number of nested DO loops. Vector-

izatlon of even the Inner most loop results In large time savlngs. Back sub-

stltutlon Involves repeated dot products of prevlously formed vectors. This

can agaln be easily accanpllshed with the CYBER QBSDCT command. An unvector-

ited and otherwise identical vectorlzed portlon of the back substltutfon Is

shown In Flg. 4 to illustrate typICal vectorlratlon.

267

Do 460 J=2,JEND
Jl = Il+J-1
B(H) = B(11') - A(J,Il) * B(J1)

460 CONTINUE

LE=JEND-1
Jl = I1 + 1
B(H) = B(H) - QBSDOT (A(28 It; LE), B(Jlr LE))

Figure 4. Example DO Loop and Corresponding Vector Syntax

With the so lutfon of the equations established, element stra Ins and

stresses can be calculated In global coordinates. Since this calculation Is

essentially the same for every element, and care fs taken to store the neces-

sary quantltles In vector form, basic vector operations accanpllsh this task.

The solutlon vector Is found In the global coordinate system and thus the cal-

culated stresses are also expressed In this system. It Is desfreable, however,

to know the stresses in the coordinate system of each element or the

perpendicular-to-grafn and parallel-to-grain directions. The element stresses

must be transformed according to the element grain angle. Since the element

grain angles are stored contiguously and In order, this computation can be

accomplished with basic vector commands.

To complete an analysis, the stresses and stress intensity factors for

cracks must be I nserted I nto the failure/fracture criteria. The

failure/fracture criteria interfaces the mathematical results from an analysls

268

to the real f lfe fal lure aCtiOnS. Required lnformatlon includes the maximum

stresses and thefr locations within the flow-grain mesh. Since stresses are

stored in element order in vectors, thfs fnformatfon can be obtained much

quicker and more easily by using CYBER Q8 commands than with scalar search

algorithms.

To put the vectorlzatlon dlscussed Into perspective, a typical problem

was ana I yzed uslng unvectorlzed and vectorlzed routlnes. Since unvectorlzed

versions of the mesh generator (Item #I) and the maximum stress searching rou-

tine (Item #5) do not exist, vectorlzed routines had to be used for both sides

of the example. The example problem consisted of 4180 degrees of freedom

(equations) and for sfmplfffcation no cracks were included. The corresponding

CPU execu+lon times for different phases of the analysis are shown in Table 1.

TABLE 1. EFFICIENCY OF EXECUTION TIME FOR VECTORIZED ROUTINES

UNVECTORIZED VECTORIZED EFFICIENCY
TIME IN SEC, TIME IN SEC, UNVECT/VECT

MESH GENERATION 1.90 1.90 1.00

STIFFNESS MATRIX FORMATION 4.84 2.80 1.73

SOLUTION OF EQUATIONS 97.87 4.91 19.90

MISCELLANEOUS COMPUTATIONS 5.05 4.60 1.10 ---*--------------*-------------*-------
TOTAL 109.66 14.21 7.70

As clearly shown for this problem, the vectorfzed equation solver was 20

times faster than its otherwise identical unvectorfzed version. Thls savings,

along with other vectorfzatfon, reduced analysis time by nearly a factor of

269

I lllll Ill I II Ill II Ill I I I I lll1l1l1l~lllllllllllIl lllll lIlllllllllllIl

ef ght. One will note that while the miscellaneous computations were somewhat

fnsfgnfffcant in the unvectorfzed analysis, they take on new importance in

tne vectorfred analysis. Addltlonal effort may be well spent In further vec-

torfzatfon of the miscelfaneous computations.

Failure in wood members Is belng successfully modeled and analytfcally

Investigated in greater detail than before possible through implementation of

program STARW on the CYBER 205 (2). An understanding of material fal lure Is

essentf al to accurately predict member strength and to safely and efficiently

use tne material in engineering application.

Vectorlzatlon of program STARW has reduced an unwleldly and expensive,

nonllnear fallure model Ing method Into an efflclent research tool. Vector I za-

tlon of exlstfng routines need not be a lengthy and laborious effort to

achieve execution time savlngs. It has been shown that careful organfzatlon of

cperands Into vectors and modest effort In invoklng vector syntax can cut pro-

gram execution time by a factor of nearly 8 for a typical problem In thls

research. The largest savings Is realized In the solution of the simultaneous

equations.

While use of program STARW is expected to provlde new Information on

fracture and failure in wood members, the avaflabillty of machines with the

capabillrfes of the CYBER 205, in general holds promise for advances in the

analytical model fng of all materials. These advances in research will fnl-

tiate new applications of materials and more efficient and reliable use of

materials in exfstlng applications.

270

The authors gratefully acknowledge the support of thls research by the

Natlonal Science Foundation under Grant No. CME-79-18170 and the lnstltute for

Computational Studier at Colorado State Unfversfty.

PFFFRfWES

1.

2.

3.

4.

Atlurf, S. N., A. S. Kobayshf and M. Nakagakl, “An Assumed Displacement

Hybrid Flnfte Element Model for Linear Fracture Mechanics”, l&. Jourm

gf Fracture Me-, Vol. 10, p. 1281-1287, 1975.

Cramer, S. M., “Analytical Strength and Fracture Prediction 1 n Lumber”,

Ph.D. Dlssertatfon In progress, Clvfl Englneerlng Department, Colorado

State Unfverslty, Fort Collins, Colorqdo, 1983.

Goodman, J. R. and J. Bodfg, IcTension Behavior of Wood - An Anfsotroplc

Inhomogeneous Material”, Final-Report to the Natlonal Science Foundation

(Grant No. ENG 76-844211, Structural Research Report No. 32, Department

of Civil Engineering, Colorado State Unlverslty, Fort Colllns, Colorado,

1979.

Phi I lips, G. E., J. Bodlg and J. R. Goodman, nFlow-Grafn Analogy”, m

Sclem, 14(2):55-64, 1981.

271

I IIIII

ALGORITHMS FOR SOLVING LARGE SPARSE SYSTEMS
OF SIMULTANEOUS LINEAR EQUATIONS

ON VECTOR PROCESSORS

RONALD E. DAVIS

CONTROLDATACORPORATION

SUNNYVALE, CALIFORNIA

-

-

ALGORITHMS FOR SOLVING LAW;E SPARSE SYSTEMS OF
SIWLTANEOUS LINEAR EQUATIONS ON VECTOR PROCESSORS

R. E. Davis

Control Data Corporation
Sunnyvale, CA

ABSTRACT

Very efficient algorithms for solving large sparse systems of
simultaneous linear equations have been developed for serial
processing computers. These involve a reordering of matrix
rows and columns in order to obtain a near triangular pattern
of non-zero elements. Then an LU factorization is developed to
represent the matrix inverse in terms of a sequence of
elementary gaussian eliminations, or pivots.

In this paper we show how to adapt these algorithms for
efficient implementation on vector processors. Results
obtained on the CYBER 200 Model 205 are presented for a series

of large test problems which show the comparative advantages of
the triangularization and vector processing algorithms.

275

PRELIMINARY RESULTS IN IMPLEMENTING A MODEL OF THE WORLD
ECONOMY ON THE CYBER 205: A CASE OF LARGE SPARSE

NONSYMMETRIC LINEAR EQUATIONS

DANIEL B. SZYLD

INSTITUTE FOR ECONOMIC ANALYSIS
NEW YORK UNIVERSITY

NEW YORK, NEW YORK

Preliminary Results in Implementing a Model of the
World Economy on the Cyber 205: A Case of Large

Sparse Nonsymmetric Linear Equations

Abstract

Daniel B. Szyld
Institute for Economic Analysis

New York University

A brief description of the Model of the World Economy
implemented at the Institute for Economic Analysis is
presented, together with our experience in converting the
software to vector code.

For each time period, the model is reduced to a linear
system of over 2000 variables. The matrix of coefficients
has a bordered block diagonal structure, and we show how some?
of the matrix operations can be carried out on all diagonal
blocks at once.

We present some other details of the algorithms and
report running times.

279

1. Description of the Model

The first input-output model of the world economy was

originally developed for the United Nations by Leontief, Carter

and Petri [1977] as a tool for evaluating alternative long-term

economic policies. The most recent version that has been

implemented spans the period 1970-2030 in lo-year intervals.

The model is dynamic in the sense that the solution for each

lo-year period requires information obtained from the solution

for the previous period. In this paper we focus on the solution

of a single time period.

In the current version of the model, the world is divided

into 16 regions (r=16) and for each of the regions the detailed

economic activities are described by a set of linear algebraic

equations of the form

AiLi + Six = 0 (i = l,...,r). (1)

The components of the vectors Yi correspond to levels of

domestic production, imports, and exports of goods and ser-

vices, and so on, for each region, and w is the vector of _

total world exports. In addition there are global constraints

described by the equation

i
i=l

Giyi = 0 , (2)

which imposes the consistency among regional trade relations.

A more detailed description of the model can be found in

Leontief, Carter and Petri [19771, Duchin and Szyld [1979], and

Szyld [19811.
280

All the matrices involved are very sparse. For example

Ai could be 200 x 250 with 2500 nonzeros.

Si could be 200 x 50 with 50 nonzeros.

Gi could be 50 x 250 with 100 nonzeros.

Each matrix Ai has more columns than rows and therefore some

components of Yi have to be prescribed.

If Xi are the vectors of unknown components of Yi and Mi

and Ei are the corresponding submatrices of Ai and Gir the whole

model for a single time period can be regarded as a linear

system of equations of over 3000 variables with a nonsymmetric

bordered block diagonal matrix of coefficients of the form:

Ml 81 Xl
M2 s2 x2

. . .
. . .

. : .
Mr sr Xr

ElE2...E, 0 w

where the blank blocks in the matrix are zero blocks.

bl
b2
.

= .

ir
0 -

(3)

When the model was first implemented, the program for

the solution of (3) inverted the matrices Mi and stored the

inverses. The approximate computer time to perform this task

was 4 hours on a PDP-11. The (dense) inverses were saved for

subsequent runs during which they were updated depending on

the components of xi p rescribed and on changes in the.matrices

Ai. Each of these subsequent runs required 110 seconds on an

IBM 370 for each time period.

The set of prescribed components of Yi and the matrices

are used to determine a scenario, i.e., a set of economic

assumptions. Studies carried out with the World Model compare

281

results of different scenarios, i.e., the implications of the

different assumptions. The consequences of the introduction

of new technologies, different development strategies, or

shifts in trade patterns are among the numerous scenarios that

can be analyzed. Thus, the World Model is a flexible tool to

analyze alternative policies. Several large scale empirical

studies have been carried out with this model. The most recent

ones are reported in Leontief and Duchin [19831, Leontief and

Sohn [19821, Leontief, Koo, Nasar and Sohn [19831 and Leontief,

Mariscal and Sohn [19821.

To make this tool much more flexible we needed to greatly

reduce the computational resources required to run a scenario.

A first step in that direction was the application of sparse

matrix techniques for the solution of (3). In the present

implementation the matrices Ai are stored using a sparse

scheme, i.e., only the nonzero elements are stored, together

with some integer arrays indicating their locations. A single

array of approximate length 3200 contains all vectors Xi, i=l,...r.

Other such arrays contain the vectors bi, the nonzero values

of the matrices Si and Gi, or other data objects. Similarly,

objects like the nonzeros of the matrices Mi appear in single

arrays of length close to 5000.

2. Method of Solution

The algorithmic details of the solution of (3) are given

Duchin and Szyld [1979], Szyld [19811, and Furlong and Szyld

[1982]. Here we enumerate the operations for the solution

of (3) very schematically.

282

in

loop 1. For i=l,...,r

1.1. Bead Ai,Gi,Sir and the prescribed elements of xi

1.2. Produce MirEi and bi

1.3. Obtain factorization of Mi

loop 2. For i=l,...,r

2.1. Prepare different right hand sides with columns of Si

2.2. Solve systems with matrix Mi

loop 3. Obtain 2

loop 4. For i=l,...,r

4.1. Compute &i - Six

4.2. Solve Mizi = ki - Six

The factorization of the matrices Mi (in step 1.3) and the

solution of several linear systems with them (in steps 2.2 and

4.2) are performed with routines from the MA28 set developed

by Duff [19771.

We report the running times for a single time period with

this method of solution without any vector code in Table 1.

Table 1.

System/compiler options CPU sec.

IBM 370/168 -38

IBM 3033 -20

Cyber 205, no options 11.46

Cyber 205, vectorization by the compiler 1 9.04
.

283

Architectural features combined with the sparse matrix

techniques resulted in running times three to ten times faster

than the 110 seconds that subsequent runs required after compu-

tation of the inverses in the first implementation of the

World Model. The goal is now to obtain vector code for the

Cyber 205 that will further reduce the overall running time.

3. Code vectorization

The redesign of the World Model software for its efficient

use on the Cyber 205 was conceived in three phases:

I. Elementary operations over all regions

II. The MA28 package inner loops

III. New concepts for MA28

Phase I consists essentially of the vectorization of all

operations except those associated with the factoring of the

matrices Mi and solutions of-the corresponding linear systems.

Those operations correspond &o steps 1.2, 2.1, and 4.1. Each

of these steps has a different structure but they all are

loops operating on vectors of length about 200, inside another

loop of length 16. The basic idea was to split the outer loop

and perform simultaneously the operations on all vectors of the

different regions, i.e., on vectors of length of about 3200.

Cyber 205 FORTRAN commands such as scatter, gather and bit

operations were used throughout.

We illustrate the vectorization of step 4.1. The length

of w is about 50. Si is a rectangular matrix of about 200 rows,

with only one nonzero entry per column. It is stored as a

vector with an accompanying integer array indicating in which

284

row each nonzero entry lies. The following FORTRAN statements

are part of sequential code for step 4.1.

DO 100 II=l,NREG
IBEG=(II-l)*NTRADE
IBEGB=IPNTB(II)-1
DO 50 I=l,NTRADE

INDEX=KTRDBG(IBEG+IJ+IBEGB
B(INDEX)=B(INDEX)-EXPSH(I+IBEG)*W(I)

50 CONTINUE
100 CONTINUE

The running time for these loops was 1008 usec. Different vec-

torization options were analyzed. One of them consisted of

scattering the vectors that contain the nonzero values of Si

and w to vectors of length of about 3200 and then performing

the triad operation. This required 9514 clock cycles, or about

190 vsec. The version adopted performs the multiplication of

the vectors containing the nonzeros of Si and w first, a

vector operation of length about 800, scatters that vector and

performs the final subtraction in 7250 clock cycles or 145 psec,

a gain of a factor of 7 from-the sequential code.

Similar gains have been achieved in the other portions of

the code vectorized in phase I. Unfortunately only a small

portion of the total running time of the World Model is spent

in the code vectorized in phase I. Thus the overall gain was

relatively small.

About 30% of the total running time of the World Model is

spent on routines of the MA28 package in which the matrices Mi

are factored (step 1.31, and solutions with many right hand

sides computed (steps 2.2 and 4.2). At the present time we

have completed only part of phase II, the vectorization of

some of the inner loops in the MA28 set.

285

Due to the startup time in any vector operation, it is

common practice to look into the length of the vectors involved

in the operation to decide if the vectorization is really worth-

while. In codes for sparse matrices, the vector length for an

operation is usually the number of nonzero elements in a particular

row or column, and thus varies within the code. The technique

used in this case is to assess if the vector length is above

a particular value and branch the process of that particular row

or column to vector or sequential code. The running time of the

code incorporating these features is 7.33 CPU seconds, cf.

Table 1.

Phase III, not yet implemented, consists of reconceptualizing

the MA28 set. We will investigate the possibility of solving

several right hand sides simultaneously, as well as other features

like special treatment of right hand sides with few nonzero

elements.

Acknowledqment. I would like to thank Valdimir Roytman for his

assistance throughout the project and Faye Duchin for useful

comments on an early draft of the manuscript.

286

References

Faye Duchin and Daniel B. Szyld, Application of Sparse Matrix
Techniques to Inter-Regional Input-Output Analysis,
Economics of Planning 15(1979) 142-167. -

Iain S. Duff, MA28- a set of FORTRAN Subroutines for Sparse
Unsymmetric Systems of Linear Equations, Report R.8730,
A.E.R.E. Harwell, HMSO, London, 1977.

Kenneth E, Furlong and Daniel B. Szyld, World Model Solution
Programs, Release 1, Institute for Economic Analysis,
New York University, July 1982.

Wassily Leontief, Anne P. Carter and Peter A. Petri, The
Future of the World Economy, Oxford University Press, 1977.

Wassily Leontief and Faye Duchin, Military Spending: Facts
and Figures, Worldwide Implications and Future Outlook,
Oxford University Press, New York, 1983.

Wassily Leontief, James Koo, Sylvia Nasar and Ira Sohn, The
Future of Non-fuel Minerals in the U.S. and World
Economy: Input-Output Projections from 1980-20000,
Lexington-Heath, Lexington, Mass., 1983.

Wassily Leontief, Jorge Mariscal and Ira Sohn, The Prospects
for the Soviet Economy to the Year 2000, Journal of
Policy Modeling A(19831 l-18.

Wassily Leontief and Ira Sohn, Economic Growth, in Just
Faaland (editor), Population and the World Economy in
the 21st Century, Basil Blackwell, Oxford, 1982, pp. 98-127.

Daniel B. Szyld, Using Sparse Matrix Techniques to Solve a
Model of the World Economy, in Iain S. Duff (editor),
Sparse Matrices and their Uses, Academic Press, London,
1981, pp. 357-365.

287

MONTE CARLO CALCULATIONS OF ELEMENTARY
PARTICLE PROPERTIES

G. S. GURALNIK
BROWN UNIVERSITY

PROVIDENCE, RHODE ISLAND

TONY WARNOCK
CRAY RESEARCH

MINNEAPOLIS, MINNESOTA

AND

CHARLES ZEMACH
LOS ALAMOS NATIONAL LABORATORY

LOS ALAMOS, NEW MEXICO

MONTE CARLO CALCULATIONS OF ELEMENTARY PARTICLE PROPERTIES

G.S. Guralnik
Brown University and Los Alamos National Laboratory

Tony Warnock
Cray Research

Charles Zemach
Los Alamos National Laboratory

The object of our project is to calculate the masses of the
"elementary particles". This ambitious goal apparently is not
possible using analytic methods or known approximation methods.
However, it is probable that the power of a modern super computer
will make at least part of the low lying mass spectrum accessible
through direct numerical computation. Initial attempts by
several groups at calculating this spectrum on small lattices of
space time points have been very promising. Using new methods and
super computers we have made considerable progress towards
evaluating the mass spectrum on comparatively large lattices.
Even so, we are examining regions of space just barely large
enough to contain the particles being examined. Only more time
and faster machines with increased storage will allow
calculations of systems with guaranteed minimal boundary effects.
In what follows we outline the ideas that currently go into this
calculation

While a long time ago it was believed that there were only a
relatively small number of such objects (for example, protons,
neutrons,electrons, photons and so on) it is now known that there
is a virtual alphabet soup of so called elementary particles. A
partial listing of these in terms of standardized short hand
description is: T? @ b" DO

ITz- ‘/ J

but a fraction of the particles
observed to date. fortunately, the properties of these particles
suggest a pattern consistent with them in turn being made out of
a "small' number of more elementary objects called quarks. To
date, despite many attempts, there are no reliable reports of an
isolated quark actually being observed.

291

Clearly, a theory is needed that explains the rich particle
spectrum in terms of quarks and yet is compatible with quarks
being unobservable if isolated from other matter. Further, from
past experience with mathematical formulations, it is natural to
insist that this description be reasonably simple and elegant.
There is exactly one existing candidate for such a description.
It is called Quantum Chromodynamics or Q.C.O. It is based on the
very successful quantized description of the electromagnetic
field interacting with electrons or P.E.O. Q.C.D. is more
complicated than Q.E.D. because the several species of quarks
needed to explain the group structure of the observed particles
as well as the confinement of single quarks allows for a very
rich mathematical structure. This structure is carried in a
partition function like object which is the exponential of an
action made of qlue fields (designated by the symbol A and quark
fields designated by the symbolY/ . Here we have suppressed the
space time dependence of these fields as well as the fact that
each symbol is actually a vector with at least 12 components. The
interaction described by the action is highly non-linear but any
term contains either zero or two quark fields which somewhat
simplifies the formulation. The primary content of the
assumption that system examined be a quantum field theory is that
at any given time every point in space has assigned to it
independent quantized degrees of freedom associated with the qlue
and quark fields. It is thus very natural to describe space time
mathematically as a discrete lattice of points with separation a
that approaches zero.

The object UCi,j) defined as ~
2 -\

U(i,j) q

p 3: A*.(i -4)

plays a prJmary role in this theory. It has the property that
UCi,j! = U(j,il. Further the U(i,j) are members of the qroup of
unitary unimodular matrices SU(3). For these fields alone we have

292

the (effective1 partition function

Here

where the sum is taken over all independent square plaquettes and

s& =’

We could stop with this form for the partition function and have
more work to do than current available machine power will allow.
However, to calculate the elementary particle spectrum (except
for glueballs 1 we must include the quark fields in our action,
The form used because of various symmetry and guage principles is

Here K is a numerical parameter. The matrix B depends explicitly
on the glue field A (of course leaving out gravity and weak
interactionsisis then taken to be

Physics is obtained by calculating the correlation functions or
vacuum expectations of polynomials of the field (quark and glue)
of the partition function formed from this action. The general
problem that must be confronted is the evaluation using the
appropriate group measure of the following type of integral.

This has many variables . Since each U(i,jl is an SU(3) matrix it
is specified by 12 numbers. If we study a hypercubic lattice with
N points in each space-time direction we are dealing with the
order of N**4*12*4 numbers just associated with the glue fields.
The quark fields are characterized by (for our discussion) 12
complex numbers at each lattice point. However, this is just the
beginning. The quanJ-itiy,are.in fact not numbers!
property that
is

cy’i j~fd=-@l !ihJ .
They have the

This anticommutivity property
essential in order that the quarks describe objects with

intrinsic half integral spin. Because the action S is quadratic
only in quark fields it is possible (using very natural

293

definitions) to explicitly perform the integration over quark
fields and leave the problem of evaluation of correlation
functions expressible entirely in terms of integrals over glue
fields. For example, if we examine the correlation function of
four quark fields we have

< F(4) yq/j\ ?'c) fJld)',=

Note that l-K6 is a (N**4*12)**2 complex matrix. Det(l-KBI is
more or less unspeakable for any reasonable size of N. Evaluation
of the correlation function above is essential for determining
meson masses (such as the pion) in this theory. Calculation of
correlations of expectations of six quark fields is needed to
evaluate properties of baryon fields (such as the proton). As a
practical matter, numerical evaluation of six quark correlations
is not much more difficult than four quark correlations. Clearly
as N gets larger the problem gets more complicated. However, we
are really only interested in the limit when N is very large
since this corresponds to the infinite physical world. Indeed, we
want to examine the limit were N becomes infinite and the lattice
spacing a approaches zero. Under some circumstances it can be
argued that neglecting the determinant should not make dramatic
changes is the nature of the physical answers we obtain. For this
discussion (and the particular project it is outlining) we chose
to set the determinant to unity. We are then left with a class of
integrals to evaluate which can be handled using Monte Carlo
importance sampling methods in conceivable amounts of time for
reasonably big lattices. Such systems have been studied
extensively using Vax (780) computers on lattices with 6**3*14
points. Using the C.S.U. Cyber 205 it is possible to examine far
larger systems. Indeed we are in the process of examining (on
several class 6 computers 1 systems with 10**3*24, 12**3*32 and
20**3*50 lattice sites.

After neglecting the determinant we are left with the basic

We evaluate this numerically in two steps. First, we define a
probability

294

Using Monte Carlo (Metropolis) methods we generate a sequence of
lue configurations which are are distributed according to

db)1 ’ iN t is important that these distributions be thermalized and ’
statistically independent’. By careful tuning of the way the
Monte Carlo hits are made taking into consideration the nature of
the group measure we can enormously speed up the decorrelation of
consecutive lattice configurations. Indeed for most cases, it is
not difficult to obtain a factor of four increase in speed of
lattice generation over conventional methods through careful
tuning. Even careful tuning of the physics of this problem does
not give reasonable run times for large lattices unless full
advantage is taken of the possibility of vectorizing the code. To
do this efficiently we use red black methods of sweeping through
lattice configurations. In addition, the memory requirements for
large lattices rapidly become excessive so we use time slicing to
control our memory allocations. We must do this since the demand
paging algorithm on the 205 does not work efficiently with the
codes which are naturally written for this problem.

After a collection of independent lattices are generated we
continue to evaluate the basic integral for the problem by
evaluating the inverse of 1-KB for the guage configurations of
each lattice. This is somewhat simplified since this inverse need
be evaluated for only one base site-that is a fixed row of the
matrix. However, it turns out that this inversion must be carried
out for three or four different values of the parameter K. The
method that has been most commonly used to invert the matrix
employs a Gauss Seidel method. This is slow, taking almost an
order of magnitude more time than the lattice generation. We have
other methods under study which for the particular sys terns
involved promise to be much faster. The Gauss Seidel method is
used in a form first applied to this problem by Weingarten. We
need to evaluate the form

Here h is at a fixed lattice point but can vary through the 12
values associated with the indices of the quark field at that
point. This equation is now re-written in the form

J is a parameter which can be tuned in order to obtain the

295

fastest convergence in the solution of this equation by iteration
in f. In practice we code this procedure using red black ordering
and time slicing to obtain vectorization and efficient memory
management.

After the matrix inversion is performed and the correlations
are evaluated through weighting over the available lattices we
must extract physical information from the output functions. The
easiest information obtained is the masses of the particles
described by this formalism. It is ,for example, a general
property of the theory that we are dealing with that if we look
at correlation functions depending on only two space time points
and then sum over all spatial directions that the resulting time
dependent functions depend only on sums of exponentials with the
exponent linear in the masses of the appropriate particles and
the time separations. It is an easy matter to fit to exponentials
and extract numerical values for the masses. However to do this
we must tune the parameters of the theory to match the physical
mass spectrum at some value of the mass. In effect we have a two
parameter fit for the entire mass spectrum. It is found however
that the Gauss Seidel method fails to converge for the physical
value of the pion mass and hence the need to do the extrapolation
in K mentioned earlier. After this is done, it has been found
that on smaller lattices a fairly accurate fit can be obtained to
the relatively light particles. We expect to find much better
fits for a large lattices where edge effects should ha ve a
smaller effect on the calculated results.

REFERENCES
Many workers have contributed to this new field. Without any
attempt to be complete we list some references which will give
the the interested reader a starting point for study of the
topics discussed in this talk.

1. K. Wilson, Phys. Rev. DlO, 2445 11974)
2. M. Creutz, L. Jacobs and C. Rebbi, Phys. Rev. 020, 1915 (1979)
3. M. Creutz, Phys. Rev. 021, 2308 (1980)
4. 0. Weingarten, Nucl. Phys. B215&fs7', 1 (1983).
5. F. Fucito, E. Marianari, G. Parisi, and C. Rebbi, Nucl. Phys.
8180, 369 119811.
6. W. Duffy, G. Guralnik, and D. Weingarten, Phys. Lett 1258,311,
(1983)

296

VECTORIZED MULTIGRID POISSON SOLVER
FOR THE CDC CYBER 205

DAVID BARKAI
AND

MAYNARD A. BRANDT

CONTROL DATA CORPORATION
INSTITUTE FOR COMPUTATIONAL STUDIES

AT COLORADO STATE UNIVERSITY

FORT COLLINS, COLORADO

VECTORIZED MULTIGRID POISSON SOLVER
FOR THE CDC CYBER 205*

D. BarkaiM, A. Bra&t***
*Control Data Corporation, Institute for Computational Studies at Colorado
State University, PO Box 1852, Fort Collins, Colorado 80522; l **Weiztaann
Institute, Department of Applied Mathematics, Rehovot, Israel 76100.

ABSTRACT

The full multigrid (PMG) method is applied to the two
dimensional Poisson equation with Dirichlet boundary
conditions. This has been chosen as a relatively simple
test case for examining the efficiency of fully vectorizing
of the multigrid method. Data structure and programing
considerations and techniques are discussed, accompanied by
performance details.

April 1983

1. INTRODUCTION

The multigrid (NG) method has been shown to be a very efficient solver
for discretlted PDE boundary-valve problems on serial (scalar) computers.
However, it was not clear how well can the MG approach be adapted to
execute effectively and efficiently on a vector processor, such as the CDC
CYBER 205, where considerations other than operations-count may play an
important role. The purpose of this paper is to. report our experience in
implementing-an MG code on the CDC CYBEB 205. More specifically, the
test-case considered is the two-dimensional Poisson equation with Dirlchlet
boundary conditions. It will be assumed here that the reader has some
familiarity with the philosophy, the motivation and the basic computational
processes of MC as a fast solver. These processes are described in detail
in a number of papers in these proceedings and [l] and 121 and references
therein. The algorithm described in this paper is basically the same as
the one given in the appendix of [3], whose description is detailed in
sections 8.1 and 6.4 of [3]. Therefore, no full description of the MC
algorithm is given here, but the relevant details are included in the
appropriate context. The main emphasis of this paper is the vectoritation
of these processes. Thus, we will not assume an in-depth knowledge or
experience in applying HG solvers on a vector-processor type of a computer
system.

+ Presented at the International Multigrid Conference, Copper Mountain,
Colorado, April 6-8, 1983.

299

Consequently, Section 2 contains a brief summary of architectural and
conceptual features of a vector processor (specific to the CDC CYBER 205),
which are relevant to this application, as veil as software tools available
for a tight correlation between the hardvare and the computational process.
Sections 3, 4 aad 5 are devoted to the description of the techniques used
for vectorizing the procedures for the relaxation, the residual transfer
calculatioa and the iaterpolatioa, respectively. The total full multigrid
(EXG) process and various parameters and constraints are described in
Section 6 interleaved with convergence and timings (performance) details.
Finally, Section 7 contains some concluding remarks and comments regarding
future plans.

2, VECTOR PROCESSING

The most significant difference between a traditional, serial computer
and a vector processor is the ability of the latter to produce a whole
array ("vector") of results upon issuing a single hardware instruction.
The input to such a vector-instruction may be one or two vectors, one or
two elements ("scalarsn), or a combination of the above. The instructions
fall into two main categories- those that perform floating-point arithmetic
(including square root, sum, dot-product, etc., as well as the basic
operations), and those which may be collectively called "data-motion"
instructions. These may be used, for example, to "gather" elements from
one array into another using an arbitrary "index-list"; to "compress" or
"expand" an array; to "merge" two arrays into one (with arbitrary
Wiaterleaving" patterns), etc.

The need for vector data-motion instructions becomes apparent when one
considers the definition of a vector on a CDC CYBER 205. A vector is a set
(array) of elements occupying consecutive locations in memory. It means,
by the way, that a vector may be represented in FORT&W by a multi-
dimensional array; i.e;, a two- or three-dimensional array may be used in
computations as a single vector. The reason for this vector definition is
that vhen performing vector operations on the CDC CYRER 205 the input
elements are streamed directly from memory to the vector pipes and the
output is streamed directly back into memory without any intermediate
registers.

The timing formula for completing a vector instruction contains two
components. Oae is fixed, i.e., independent of the number of elements to
be computed, and is called "start-up" time. In fact, it amounts to
start-up and shut-down; it involves fetching the pointers to the input and
output streams, aligning the arrays so as to eliminate bask conflicts and
getting the first pair of operands to the functional unit (the pipe-line)
and the last one back to memory. Typical time for the "start-up" component
is 1 microsecond, or about 50 cycles (clock periods). The other component
of the timing formula is the l'stream-time" which is proporatioaal to the
number of elements in the vector. The result rate for a Z-pipe CDC CYRER
205 for an add or multiply is 2 results per cycle. It is apparent now that
in order to offset the "wasted" cycles of start- times it is beneficial
to work with longer vectors. The system is better utilized if a single
operation is performed on a long vector, rather thaa several operations to
compute the same number of results. Given a vector length, N, one can
evaluate the efficiency of the computation as the ratio between the number
of cycles used to compute results and the total number of cycles the
instruction has taken; i.e., (N/2)/(N/Z + 50). The maximum vector length

300

the CDC CYBER 205 hardware allows is 65,535 elements. The start-up time
becomes quite negligible long before that.

The vector "argumeats" for vector instructions are inserted through a
coastruct called Descriptor. It is a quantity occupying 64 bits which
fully describes a vector through two integer values: one is the virtual
address of the starting location of the vector, the other is the number of
elements, or the length, of the vector. An element may be a bit, a byte, a
hslfrord (32-bits) or a word (64-bits) depending on the intructioa and the
argument within the instruction. The CDC CYBER 205 FORTRAN provides the
ability to declare variables of "type" Descriptor and Bit, as well as,
extensions for assigning Descriptors to arrays and syntax for coding vector
instructions without such an explicit associatioa. Bit arrays occupy
exactly one bit per element, since the CDC OIBER 205 is bit-addressable.
Bit vectors are used for creating a "mapping" between an array containing
numerical values and a subset of it. A Bit vector may be used to control a
vector floating-point operation (hence the term "control-vector" vhich is
commonly used for a Bit vector) as follows: Take, for example, an add
operation. All the elements of the two input arrays are added up, but only
those result elements vkre the corresponding element of the control-vector
is 1 v-ill be stored into the results vector. The other elements will not
be modified. Alternatively, one may specify storing on zeros in the
control-vector, and discarding results corresponding to a 1.

Another cormnon use of bit vectors IS associated with some of the data-
motioa instructions. T'wo examples will be given here: The "compress"
instruction is tied to create a vector which is a subset of another vector.
This operation has two input descriptors- one points to a numeric vector,
the other to a bit vector. Whenever a 1 is encountered in the bit-vector
the corresponding numeric element is moved to the next location of the
output vector, i.e., the input array is "compressed" (the reverse process
may be accomplished with an "expand" instruction). A single bit-vector may
also be used to "merge" tvo numeric vectors into one. The bit-vector is
scanned and vhen a 1 is encountered the next element of the first input
vector is put into the next location of the output vector, vhen a iero is
found in the bit-vector the aext element of the second input vector is
moved into the next location of the output vector. The timing for both
these instructions is dictated by the total length of the bit-vector. The
result-rate is the same as that of vector arithmetic, i.e., on a two-pipe
CYBER 205 it is two elemets per cycle (whether they are moved or not). It
will be noted here that there are vector instructions for creating repeated
bit patterns at a rate of 16 bits per cycle.

Before concluding this section let us briefly mention the existence of
aa "average" inStNCtion, which computes an average of two vectors, or
adjacent means of a single vector, at the rate of a single floating-point
operation. Oae can also "link", for example, an add and a multiply opera-
tion, provided at least one of the three inputs is a "scalar,,, and perform
the two operations as if it were only one. AU the instructions mentioned
above are directly available through Fortran in-line function calls.

3r BXLUXTION

Nov ve are ready to examine the vays in which to utilize the tools and
the vector processing concepts discussed in the previous section for
vectorlzing the Hultigrid application. The success of such an exercise

301

hinges, to a large exteat, upon the efficieacy vith which the relaxatioa
process may k accomplished.

Discrctitatioa of the two-dimensational Poisson equation is achieved
via the S-points differeaciag scheme. Thus' assuming geometric iattrpreta-
&ion of the indices for the momeat, the set of the simultaneous equatioas
to be solved may be written as

ui,j-1 + “1-l,j + ui+i,j + ui,j+~ - 4 * ui,j - h2Fi,j

vhcre u is the uaknova function, h Fs the InterPal betveen two grid points
(in either directioa) and F is the right-hand side function. 1 varies from
2 to HI-1 and j from 2 to N2-1, where Nl and N2 are the number of
grid points along the two directions.

One may vant to coasider the usual (lexicographic) Gauss-Seidel relaxa-
tion procedure. This, however, vi11 be fn conflict vith vectorizatioa, as
may be easily deduced. The Gauss-Seidel relaxation is characterized by the
use of updated values as sooa as they become available. Vectorization means
processing many such values in parallel, i.e., not waiting for the previous
element to be updated. The obvious alternative is the red-black or
checker-board ordering, vhere all the four neighbors of each point belong
to the other "color". The convention used here is that the “color” of the
grid points at the corners of the rectangle is red. The grid may accord-
ingly be divided into tvo vectors and the relaxation performed in two
stages : first, the values at red points are updated using “old” values,
then the values at black points are updated using the “new” red values.
Throughout the code the tvo vectors of the unknown functioa (and of the RHS
functioa) are stored consecutively following each other, vhere inside each
vector the values are stored column-vise an shown in Figure 1. This
storage applies, of course, to all the grids used.

Figure 1. Mapping of the Lexicographic into the “Red-Black,’ Ordering. The
dotted une indicates the separationa of the grid polnts.intO two vectors.

302

The reader vi11 uotict that cht vectors thus created art not confined
to one column, but txttnd over cht entire grid. It waa done in order to
achieve longer vectors in lint with the desire expressed in Section 2.
This, however, introduces cht hazard of ovtrvriting values residing on the
boundary of the grid. To avoid this a bit control-vector was created for
each grid, in a set-up routine, which concains zeros where boundary points
exist and ones for interior points. We uat this "boundary control vector"
to assure storing new values only inro the interior of ehe grid.

The computation requires the sum of cha 4 neighbors for tach grid
point. One can easily verify chat, using vtceor add operations this can be
done with tvo opcracions only. One to add a vector into itself, with some
offset (e.g.. Starr with tltmtnm 2 and 5 in Figure 1) and the second to
add the rtsultane vector into itself (vith some other appropriate offset).
The remaining calculation involves subtracting the result from the RHS
values and multiply by a constant (being -0.25), vhich is accomplished aa a
linked-triad operation; the result is ehta stored into place under the
control of the boundary bit-vtccor. Thus, each of the two stages (two
"colors") rtquiru thrtt floating-point optraciona using vector length of,
approximarely, (N1 l N2)/2 elements long. In fact, some more savings
in the compucaeions occur in the first relaxation sweep afttr moving to a
coarser grid, since the sum of the "neighbors" need not bt computed for the
first “color,” being known to bc zero. This is because we art btginning to
compute a correction-function vhost first approximation is zero. The
vector-operations count for this relaxation s~ttp Is thus reduced from 6 to
4. Also, vhtn transferring a solution-function (noC "correction") to a
finer grid, as part of the FMC process, an interpolation can be used which
viJ.I. save cht relaxation on cht first "color" (see Sec. 5).

In concLusion, the rtlaxacion process can obviously be done txtrtmtly
fast on the CYEER 205. Timing details will be given in Section 6.

4. FIMZ TU COAESE BESIDUALTBBNSFEB

Rtsiduals have to be computed at those fine-grid points which also
belong to the coarser grid. These residuals art directly transferred to
the corresponding coarse-grid poines weighted by l/2 ("half injtcclon"; the
factor of l/2 is motivated by the fact that eht fine-grid residual is zero
at black fine-grid points, htnct the ocher residuals should be multiplied
by l/2 to rcprtstne the correct average). Set Figure 2.

The computation involves four floating-point operations (tvo of thtm
art linktd triads) for evaluating the residuals of the red points on the
fine-rid and multiplying them by l/2. This, however, does not conclude
the procedure. At this stage ve need to apply the "comprtsa" operation
three times aa follow: using a prt-dtfintd bit-vector ve extract the
rtaidual values corresponding to coarse-grid points, i.t, belonging to
oddaumbtrtd columns of the red scctioa of-the finer grid. (Note that ve
have throwa away b&f the calculattd rtsidnala. This procedure is both
simpler and a little faattr than having to perform all the comprasa
operationa needed for computing only the required rtsidurls.) Now, as is
evident from Figure 2, we have all the dtrirtd values for the coarser grid
rtortd ia ltxlcographic order. To separate them into “red” and "black"
sections the I'compreas" instruction is applied Mce (once for each color)
using a prc-dtfintd “picket fence" bit-tcfor. The procedure as described
here products opeimum performance even though somt redundant operation8 are

303

performed. The alternatives are to perform different (more "costly") data
motions or to operate on much shorter vectors. Finally, another vtccor
operation is txtcuttd to zero out the unknown functioa of the coarser grid
in preparation for evaluating the correction function. In total the proca-
dure rtquirts 8 vector "start-ups" associated uith 5 operations of approxl-
mate length of (Nl * N2)/2, and 3 operations of length (Nl l N2)/4, vhtre
Nl and N2 are the dimcnsioas of the finer grid.

. I .

Figure 2. Transfer tu a Coarser Grid: The residual calculation. Each
'90xB' contains the fine grid points involved in the computation .for the
corresponding coarse grid point.

5. INEBPOLATION

Interpolation, in the context of this paper, is the process by which we
transfer from a given grid to a finer one. Two types of inttrpolacions are
employtd here: Type I interpolation is used vhtn a correcrioa is 'interpo-
laced from the coarser grfd and added to the finer grid. The Type II inter-
polation is used to compute a first approximatiou on the finer grid, based
on existing values on the coarser grid. The use of the red-black ordering,
combined with the fact that a relaxation always follows an interpolation,
impliu that only one color of the finer-grid points need to be interpolated
(the other color vlll be computed by a rtlaxacioo pass on that color).

Type I interpolation is bilintar employing points at shown in Figure 3.
Only interior black points oa the finer grid need to bt evaluated. Due to
the rtquirtd averaging of the coarse grid values it is coavtnitnt to first
merge ehe red and black points of this grid wing the "picker-fence" bit
vector to produce the ltxicographic ordering. Next, tvo averages art

304

computed. The average over the coarse grid, vhere the two input vectors
are offset by a column, viU produce the quantities to be added into black
points OP evenumbered columos on the fine grid. A second average, vhere
the offset between the tvo vectors is one elemnt, is executed for fine
grid black points corresponding to odd numbered columns. This last opera-
tion produces redundant values (at the end of each coarse grid column)
vhich are throwa away using the "compreso"
wedefined bit vector.

operation with an appropriate
The two resultant coarse grid "average-vectors"

are then interleaved, using a “merge” instruction, under the control of the
bit vector vhere the "l‘s" and "0's" correspond to odd and even columns,
respectively. Pixklly, the urged values are added to “black" points of
the finer grid under the control of the “boundarf bit-vector which inhibits
storing values into the boundary of the grid. The whole procedure amounts
to 3 floating-point operationa, 2 "merges" and 1 "compresu." The 6 vector
operations may also be divided into 4 operations of length (N1 l N2)/4
and 2 operations of length (Nl l N2)/2, approatelp.
are the dimensions of the finer grid.)

(Nl and N2

Figure 3. Type I Interpolation. It shovs vhere averages of coarse grid
values are added into "Black" points cm the fine grid.

Type II interpolatioa la a 4th order one, described, for example, in
secrion 6.4 of [31. It produces nev red unknowa-function values on a finer
grid using rotated difference operators. The values at the black points
are produced by half a relaxation sweep, i.e., a relaxation paas over the
fine-grid black points. (This pass may be regarded aa part of the interpo-
lation process. In the timing tables below, however, the time spent in
this pess is counted as relaxation time.) The process is described picto-
rially in Figure 4. All the interior coarse grid values are moved to occupy

305

the corresponding fine-grid points. The relaxation operator is applied to
these vslues in order to compute interior red points of the even-n-bared
colomns on the fine grid. The only difference between the relaxation here
spd the one described in Section 3 is that the operator is the “rotated”
S-point Lap&clan and the interval ktween each point and its neighbors is
changed from h to @h. The EES function values rsquircd for this relaxa-
tion are avsilable from the fine grid RJlS array (a "compress" operation is
performad to retrieve even-nwsbersd calm values). The whole procedure,
thus, requires 2 "merges" (one for merging red-black valuss of the coarse
grid, the other for merging the "trsnsferred" and “relaxed” values of the

red fine grid points); 3 floating-point operations for the relaxation; 2
“C~l3!88” operations (one for throwing away redundant, incorrect averages
and one for collecting REfS values); and, finally, one vector-move operation
under the control of the boundary bit-vector for storing the aefy red fine
grid values into place. Five out of the 8 vector operations have length of
about (N1 * N2)/4, the other 3 are associated with a length of (Nl l N2)/2;
Nl and N2 being the dimensions of the finer grid.

I

0

x

0

*

0

x

0

*

0

x

0

X.

I’ x 6L*
Figure 4. Type II Iatcrpolation. Coarse grid values are transferred to
odd numbered columns on the fine grid. These values are wed to compute,
via ths relaxation operator, the even aumbered column values.

6. PEEFOBllANcE AND COHYEBCENCE

The bssic computational procedures, studied in the previous three
set eons, can now bs linked together to form the FXG process. Figure 5 is
a scksmatic description of the sequence of events vhich leads to an
approximate solution of the difference equations. The finest grid (where a
solution is sought) is assigned the highest level number. The example

306

depicted in Figure 5 descrfbes ap Fnc tith 5 levels vhere the process
stats at level mmber 2. This may not be aecessary, as vill bs argued
Mow, and onm may visurLite the FMG starting at a higher level sfmply by
deleting the left-hand-side of the figure. This starting level is a
parameter controlled by the user. The F?fG shown la Figure 5 la composed of
vhrt is knowll as ‘7” cycles. In each "P' cycle one performs relaxation-
rsslduel calculation-relaxation . ..uutil reaching the coarsest grid, then a
aquasme of interpolation7e3.axatiou is uscuted. The transfer from one
‘YP cycle to tha next la achieved da Typm II interpolation. More
sFecifi&y, thr FMC m Fnplemated my be chamctrrfzed as
F?fG (H,L,Xl,X2,&3,B4), vhsre n is the nuder of’levels and L is the
sturting level; El and B2 indiute the number of rslpr,tions before svinz
to a coarser grid and before moping to a finer grid, respectively.
R4 have the ssme maning and apply to the last V' cycle only. All these
parmeters are provided by the user* The use rsay also specify the rlza of
thr coarsest grid to be rued. It mast heve an even number of internals in
ssch directioa. (In our experiments the coarsest grid had 3 by 3 points;
1.8. * 2 by 2 InterPals.) The user also specifies the mesh size h (assumed
to be the same in both directions) on the finest grfd.

4

3

2

1

l

Figure 5. The Full MuLtigrid (FMG) Process:, FMG (5, 2, U, B2, 83, B4).
The circles indicate the number of relaxations performed at a given level.
Douuwards orTow signifies residu calculation bemean rsJ.alations, upwards
arrow fmplies fnterpolatlon. (Uhen a level is encountered for the first
time the interpolation is of Type II, indicated by a double line above,
otherwise it is of Type I.) When level 1 contafns only one lntarior point
only one relsxation sweep is perfowd thereon , regardlass of the values
given to El and 83.

The process described above is deterministic, ia the sense that the
user defines the steps to be tShSI, bawd on prior knowledge of the
characteristics aad smoothness of the functioa to k solved. It in also
kaoue that if L-2 the FUG guarantees a solutioa error smaller than the
tmmation emor (introduced by the differencing scheme), for L2 sons.
for etnmple. !& have &lowed, however, as a usemption, the evsluation of

307

the Ll, L2 and L,noms of the residual at var%cms points. Testing was
done for problems vhich have solution of the Saxa:

c * cos (k (x + 23))

with and without the addition of a 6th degree polyaomial which vanishes on
the boundary. In all these uses the FHG process vith L=2 indeed produced
a solution with an algebraic error (error in solving the difference
equations) much smsller than the truncation ermr, in the L1, L2 and L,
aorms .

Ooly "V(2,l)" cycles were used for the results and tinrings to be quoted
here. This turns out to bs the optima cmshimtion for the Poisson
equation. More relaxstions at esch stage do wt improve the final result
l oough to justify the additional vork, less tiurtions may cause deteri-
oration in the accuracy. (If full weighting were used instead of half
injection, the optimal cycle would be "V(l,l)". This would, however, be
less efficient than the present procedure since full weighting is substan-
tially more costly than a relaxation sweep.) In the performance details
vhich follow, ve vill give results for various Prlues of L since, in many
cases, in particular vhen a reasonable initial guess is available, high
values of L, even L-H, may provide sufficient accuracy. This is, in
particular, the situatioo when the PO~SSOII solver is used within some
external iterative process, or at each time step of an evolution problem.

&fore dig-sing the timings ve should briefly mention SOW set-up
procedures. A routine is provided for re-orderiag the initial array (from
l&cographic to red-black) if it is aot so structured yet. This is done
through two "picket-fence compress" operations and amounts to 0.185 msecs.
for a 65 by 65 grid, for example. Putting ths solution back into lexico-
graphic order is done with a single "merge" instruction and takes half as
long. Next, there ig a routine vhich defines vsrious pointers and lengths
for all the grids used, as well as the bit-vectors discussed earlier. For
many applications, vhere the solver is used mny times vith the S+W? grid
definition, this v-ill be done only once. It will aot, therefore, be
included in the total times quoted below (it takes 0.29 msecs. for a 65 by
65 grid with 6 levels). The last set-up routine is included in the timings
fnfonnation. this routine defines the boundary velues and the EHS for all
the levels bet-en L and M-1. It also sets the initial guess on the level
L grid.

The code ves mn with grid sizes of 33 by 33, 65 by 65 and 129 by 129
(H = 5, 6 and 7, respectively) with L-2,...,& Total execution times are
given in Table 1. It shows, for example, that a 65 by 65 grid may be
solved in as little as 1 msec., and, at most, in 2 msecs. By examining the
procssalng time per grid-point one can see the effect of vector-instructions
start-up times or the dependence of the perfonnrnce upon vector lengths.
On a serial processor the time per element wuld have been, approximately,
a constant across each line in Table 1. We obseme, however, that the
processing of the 129 by 129 grid is roughly twice as efficient as that of
the 33 by 33 grid. This is due to the fact that even though the aumber of
vector “start’~ps” remains nearly the same (across a given line), the
number of elements solved for has increased by a factor of 16. Hence, more
time is spent doing useful arithmetic in the vector pipelines.

308

TABLE 1. Execution times for various paramcccrs of the FMG. The entries
on the left are total times in milliseconds. The entries enclosed in
parenthesis are the execution times in microseconds per grid-point (only
interior points are taken into account).

I H-L+1 I 33by33 I
(HG 5)

65 by 65 1
(X ; 6)

129 by 129 1
1 (.No. of "V"'s) 1 I (H ; 7) I
I 1 1 0.360 (0.37) I 1.006 (0.25) I 3.293 (0.20) I
I 2 1 0.604 (0.63) I 1.552 (0.39) 1 4.910 (0.30) i
I 3 1 0.729 (0.76) ' 1.810 (0.46) I 5.440 (0.34) I
I 4 1 0.801 (0.83) 1 1.947 (0.49) I 5.687 (0.35) I
I 5 I I 2.009 (0.51) 1 5.807 (0.36) 1
I 6 5.875 I I 1 (0.36) 1

Tables 2 and 3 present a more detailed analysis of timings for a single
example, namely for solving a 129 by 129 grid with 7 levels and starting at
level 2. The entries in Table 2 show timings in msecs. by level and by
procedure. One notices that the total time spent performing relaxations is
less than 50X of the total time. This is to be compared against the go-902
of total time used for relaxations on a serial processor. This is, of
course, due to the fact chat the vectorized relaxation is extremely
efficient and does aot fnvolve any data-motion operations. The interpola-
tion and the residual calculations, though fully vectorired. involve some
data-notion operatioas, and, therefore, consume a relatively higher propor-
tion of the execution time than they would on a "scalar" computer. Another
obsemation vorth mentioning is that the contributions to all the procedures
arising from levels 2 to 4 is roughly the same, even though the amount of
vork differs by a factor of 4 bctvetn levels. This is a consequence of the
relatively short vectors vhich characterize the coarser grids. Xt also
explains the larger weight the coarse grids have in the vectorized code
compared to that of the serial process.

TABLE 2. kecution times in milliseconds for solving a 129 by 129 grid
with starting level 2. Breakdown by procedure and by level. For the
residual calculation and the interpolations the entry in the table
corresporxis to the f her grid involved.

I I Grid I I Residual l I I
I I Initiali- I Relaxa- I Calcula- I Interpolation I I

Level I
I 1 (3x3)

ration I tion I tion I Type 1 1 Type II 1 Total I
I 1 0.010 I I 1 0.010 I

I 2 (5x5) I 0.011 I 0.179 I 0.014 1 0.011 I I 0.215 I
I 3 (9x9) I 0.015 1 0.160 l 0.060 1 0.049 1 0.024 1 0.308 1
I 4 (17x17) 1 0.034 I 0.189 I 0.068 I 0.053 1 0.028 I 0.372 1
1 5 (33x33) I 0.106 I 0.320 1 0.117 1 0.095 1 0.053 1 0.691 I
1 6 (65x65) I 0.388 1 0.690 1 0.261 I 0.194 I 0.141 I 1.674 I
I 7 (129x129) I I 1.257 l 0.497 1 0.357 1 0.494 I 2.605 1
I I I I I I I I
I TOTAL I 0.554 I 2.805 1 1.017 I 0.759 I 0.740 I 5.875 1

309

In Table 3 we have measured the time in microseconds for each time a
procedure is executed for a given level, accompanied by the number of times
the procedure is performed. It should be noted here that when level 1 is
involved in any of the procedures a scalar code was used, since it has only
one interior point. Again, the effect of vector lengths is such that the
level 3 relaxation is comparable to that of level 2, for example. Only
when we get to the finest grids do we observe timing ratios which
correspond to the ratios of the number of elements processed. The reader
should be reminded that the average time of the relaxation procedure is aot
fully accurate, since some relaxations are not quite "complete" as was
explained ia Section 3 (i.e., after Type II interpolation and after
residual calculation). The residual calculatim takes longer than the
relaxation (in contrast to the scalar case), which is understandable from
the discussion in Sections 3 and 4.

TABLE 3. Procedure-calls count sad average times ia microseconds per
call. Breakdowa by levels for the 129 by 129 problem with starting level 2.

Note: Some of the relaxations are not "complete." (See Section 3)

I I I I Interpolation I
I l.Belaxation I Residual 1 Type I Type II: I
I LeVd 1 No. I Time I No. I Time I No. I Time NO-!- Time I
I 1 (3x3) I 6 I 1.7 I
I 2 (5x5) I 18 I 9.9 I 6

1
2.3

;
6

1 I I I
1.8 1 I I

I 3 (9x9) I 15 I 10.7 l 5 l 12.0 I 5 l 9.8 1 1 I 24.0 1
1 4 (17x17) I 12 I 15.8 I 4 I 17.0 l 4 l 13.3 l 1 I 28.0 1
1 5 (33x33) I9 I 35.6 'I 3 I 39.0 I 3 I 31.7 l 1 l 53.0 l
1 6 (65x65) I 6 1 115.0 1 2 1 130.5 1 2 I 97.0 1 1 I 141.0 1
1 7 (129x129) 1 3 1 419.0 1 1 1 497.0 I 1 I 357.0 l 1 1 494.0 1

To conclude the performance discussion we vill meation that the vector-
ired code executes about 15 times faster than the scalar version on the CDC
CXBEB 205, and roughly 500 times faster than the CDC CYBEB 720.

The lesson from what was said above is that relaxations are relatively
"cheap" in terms of execution times , and computations on the coarser grids
are realtively "costly" (compared with the ratios found on scalar
processors).

7. CONCLUXNG 9EMARKS

One important le'ssoa, knowa very well to those involved ia vector
processing, is that it demands careful data structuring and analysis of the
"mapping" between the data and the operations to be performed, if the
vector capabilities of the processor are to be efficiently utilized. We
have also demonstrated that the traditional operations-count as a measure
of processing time is not sufficient. On a vector processor one has to
take into account the number of vector operations (or the lengths of the
vectors) and the data-motion operations (which occur on a serial processor,
too, but are often ignored when algorithms are evaluated). The result of
the above is that one may have to re-examine the various parameters of the
algori4hm vhen migrating the Multigrid application from a serial to a
vector processor. This aspect requires further investigation.

310

Ve feel that the experiment with the model-case studied in this paper
was successful and the performance achieved very pleasing. It certainly
varrants continuation uork. Some obvious areas we intend to engage in are
the following: Extending the application to three-dimensional Poisson
cqua tioas ; code a similar application to cater for the, more general,
Diffusion equation; and implement "full-weighting" residual calculation and
cubic interpolation. In addition one may, of course, generalize this uopk
Ln many directions. t¶ore general boundary conditions (Nemarm, etc.) can
be implemented. The solucioa of non-linear problem8 (using PA8 multigrid
version) and systems of equations can also be vectorlted in a similar
fashion. Yore difficult, but potentially important, is the exteneioo to
general drnnains, which vfll require a lot of thought about data structures
and data motion. As a last comment, it vlll k noted that all the timings
quoted here were achieved using 64-bit arithmetic. On the CDC CYBER 205
one can we 32-bit arithmetic as veil, and, thus, double the result rate
for vector operations Mile halving the memory requirements. For the
purpose of obtaining albebraic errors smeller than truncation errors in
solving second order equations, the 32-bit arithmetic is indeed enough. We
intend to examdne this option.

[I.1 A. Baadt, 'Wa.lti-level adaptive solutions to boundarp-p8lue
problems", Math. Camp. 31, (1977), 333-390.

12.1 V. Heckbusch and U. Trottcnberg, cd., “Multigrid Methoda",
Proceedings of a Conference (Koln-Porz, Nov. 1981), SpringerVerlag,
1982.

13.1 K. Stuben, K. Trottenberg, "Multigrid Methods: Fundamental
algoritbme, model problem aa~lyris and applications".
I-176.

In [21 pp.

311

THE VECTORIZATION OF A RAY TRACING
PROGRAM FOR IMAGE GENERATION

DAVID J. PLUNKETT,
JOSEPH M. CYCHOSZ

AND
MICHAEL J. BAILEY

PURDUE UNIVERSITY CADLAB

WEST LAFAYETTE, INDIANA

TEE VECTORIZATION OF A RAY TRACING PROGRAM
FOR IMAGE GENERATION

David J. Plunkett’

Joseph M. Cychosz

Michael J. Bailey

Purdue University CADLAB

ABSTRACT

Ray tracing is a widely used method for producing realistic computer-generated images.
Ray tracing involves firing an imaginary ray from a view point, through a point on an image
plane, into a three dimensional scene. The intersection of the ray with the objects in the scene
determines what is visible at that point on the image plane. This process must be repeated
many times, once for each point (commonly called a pixel) in the image plane. A typical image
contains more than a million pixels making this process computationally expensive. A tradi-
tional ray tracing program processes one ray at a time. In such a serial approach, as much as
ninety percent of the execution time is spent computing the intersection of a ray with the sur-
faces in the scene. With the CYBER 205, many rays can be intersected with all the bodies in
the scene with a single series of vector operations. Vectorization of this intersection process
results in large decremes in computation time.

The CADLAB’s interest in ray tracing stems from the need to produce realistic images of
mechanical parts. A high quality image of a part during the design process can increase the
productivity of the designer by helping him visualize the results of his work. To be useful in
the design process, these images must be produced in a reasonable amount of time. This discus-
sion will explain how the ray tracing process was vectorized and gives examples of the images
obtained.

1. Authors’ Address:
CADLkB. Potter Engineering Center
Purdue University
West Lafayette, IN 47907
(317) 4944944

315

GEOMETRIC MODELING AND MECHANICAL DESIGN

In mechanical design, there are two broad reasons for using the computer: (1) predict

behavior, and (2) visualize. Behavior that needs to be predicted includes every test that one

would normally perform if given a physical prototype of the design: weight, center of gravity,

strength, movement, dearaaces, etc. This is why a computer model of a part is often referred

to as a “virtual prototype.” Visualization is, in effect, another form of behavior prediction. In

this case, knowing the actual appearance of a proposed design is a valuable aid in conceptualiz-

ing.

In order to feed information into visualization and analysis routines, a gcomefric model of the

design must 6rst be created. In the early days of computer aided engineering, a wireframe data-

base wa5 used to model the part shape. This w= deemed inadequate, because the wireframe

could only model a part’s edges, not its rolid voltme.

One of the methods by which we model part shapes in the CADLAB is with a newer tech-

nique called Solid Modeling. A solid modeling database has suflicient geometric information to

completely and unambiguously de& the shape of a three dimensional object. One method of

buihiing a solid model database is with a technique called Constructive Solid Geometry, or CSG.

A CSG geometric creation sequence is characterized by applying booiean operators (union,

diflerence, intersection) to groups of primitive shapes (boxes, cylinders, cones, etc). Complex

designs may be created in this manner, with the results being sufIicient to drive visualization

and other analyses. The remainder of this report will discuss the use of the CYBER 205 to pro-

duce image information in order to view an object constructed using CSG operations.

316

INTERSECTIONS OF RAYS WITH A PRIMITIVE

One nice side effect of using a CSG representation is that the resulting object can easily be

displayed using ray tracing. Ray tracing involves firing an imaginary ray from a view point,

through a point on an image plane, into a three dimensional scene. It is not mathematically

feasible to determine the visible surface of an entire CSG object in a single computation. How-

ever, it is fairly easy to determine the intersection of a ray with each of the individual primitives

which make up a CSG object. Then, a little more calculation produces the point along that ray

which is visible. If one ray is fIred through every pixel in the image plane, an image of the

object is obtained (see Figure 1).

c Y

view
point

-X

J 2
Figure 1. The Image Environment.

317

The typical (serial) ray tracing program must:

l Intersect all primitives in the scene with one ray.

l Traverse the CSG database to determine which primitive intersection is the visible surface

for that ray.

l Determine the surface intensity using the surface relationship between the surface normal,

the eye position, and the position(s) of the light source(s).

This is the visible surface algorithm. It is repeated at every picture element (pixel) in the image

plane.

The intersection of the ray with the primitives is by far the most time consuming part of the

visible surface algorithm. However, it is also the easiest part of the algorithm to vectorize.

Instead of just finding the intersection of one ray with a primitive, a queue of rays is built (seri-

ally as in a traditional ray tracing program). Then the intersections of each primitive with

every ray in the queue is found in a series of vector operations. Table I gives computation

times for 100,000 rays intersecting a sphere and a cylinder primitive. For the vector results in

this table, a queue length of 2000 rays was used.

FINDING A RAY’S VISIBLE SURFACE

The above timings are only for the lowest level in the visible surface algorithm. After all the

intersections are found, the CSG database must. still be traversed to determine which primitive

intersection is the visible surface for that ray. This constrains the length of the ray queue, since

it implies that ail the ray intersection information must be stored (after the intersection calcula-

tion) and then retrieved (for the visible surface calculation). If the ray queue is too long, the

time spent page faulting will be enormous. For this reason, the ray queue in our application is

318

TABLE 1.

CPU Timas*

Primitive Cyber 205
I

Cyber 205 Cyber 720
Scalar Vector

sphere .944 .0279 13.1

cylinder 2.729 .1614 51.48

Steiner 11.157 1.047 210.0

Speedup’

Primitive SE zzi
20s rector

s72,

sphere 33.81 409

cylinder 16.91 318

Steiner 10.67 206

2 CPU times are in seconds

CPU time P2
3 spetdup = Sag = cpU time p

1

319

approximately 2000 rays. The visible surface algorithm has not yet been vectorized. However,

it is apparent that at least parts of this process are vectorizable.

One of the reMsons ray tracing has been so widely accepted is that it can show very realistic

image synthesis effects. Shadows are perhaps the easiest extension to the algorithms described

above. To determine if a visible surface is in a shadow, one ray must be 6red toward each light

source from the visible surface. If this ray hits a solid object before it encounters the light

source, the visible surface is in a shadow. Reflection can be shown by spawning another ray

from each surface such that the angle of reflection equals the angle of incidence. Transparency

and refraction can be modeled if a refraction ray is spawned after a hit on a solid, transparent

object. What should be clear from these special effects is that the extra rays to be &ed do not

come in a predictable, vectorizabie progression. However, after a serial section of code has

determined that another ray must be tied, this ray can be placed in the queue and intersected

using vector code when the queue is full.

SURFACE PATCHES

Surface patches are used in computer aided design to sculpt the surface of a part that would

be difficult or impossible to mode! using conventional primitives such as cylinders and boxes.

Hence, surface patches play an important role in the design process of parts such as air foils and

car bodies. At the CADLAB we are currently investigating the uses of Steiner surfaces a3 a

sculpting device. Ray tracing is then used to visualize the resulting sculpted surface.

A Steiner surface is a bi-quadratic surface. This means that computing the intersection of a

ray with a Steiner surface requires the solving of a quartic equation. Approximately 65 precent

320

of the computation time for this intersection calculation involve3 the solving of the quartic equa-

tion while the rest is attributed to the determination of the coefficients for the quartic equation.

The determination of the polynomia! coefficients is a straight forward process and is easiiy vec-

torized. Vectorixing the process by which a queue of rays may be intersected with a Steiner sur-

face requires the vectorization of the root solver used for solving the quartic. For our applica-

tion we are only interested in the 6rst positive real root closest to zero. Table 1 shows the

results of vectorizing the Steiner intersection process.

To determine the roots of the quartic polynomial the slope and curvature function3 (i.e. the

Erst and second derivatives) are examined to determine the intervals over which a possible solu-

tion exists. Modified Regu!a Falsi is then used to determine the roots within these intervals.

Once a root is found it is evaluated to see if the root is acceptable.

The vector&d version of the root solver Ends the roots of a series of quartic polynomials,

each polynomial corresponding to a ray in the ray queue. The roots for all the polynomials

must be found before the process can complete. Unlike the scalar version, it is most likely that

all four root3 will have to be determined and evaluated a.3 it is likely that at least one ray will

not intersect the surface. This process is sped up by ensuring that a sign change does not occur

before using the Fa!si method to determine subsequent roots once an acceptable root has been

found for a particular polynomial. Gather-scatters are then used to compress the vector3 used

during these iterative processes. Convergence occurs when al! of the root3 being found converge

within the specified tolerance.

The quartic root solver can be used for a variety of applications. One extension to the ray

tracing program will be the inclusion of tori and other elliptical surface3 ;LS primitives. These

primitives will also require solving a fourth order equation to determine the intersection of a ray

with their surface.

321

OTHER APPLICATIONS

Another application of ray tracing at Purdue is radiant heat transfer analysis of 6nned

Tubes (MAXW831.4 Rays are fired to determine the radiation shape factor of one or more Enned

tubes. Unlike the visualization of a CSG object, maximum length vector operations may be

used since it is only of interest knowing that the ray strikes the tube and not where on the

tube. The computational requirements of this application have been reduced from 6UO seconds

on a CDC 6600 down to 3 seconds on the CYBER 205.

CONCLUSION

Ray tracing is, in genera!, a parallel algorithm. This paper examined how the parallel algorithm

can be modified for use on a vector computer. In design work, the speed with which results are

available is often critical. Vectorication of ray tracing programs promises shorter execution

times. This will benefit not only visualization, but also such diverse areaS as heat transfer, mass

properties analysis, and nuclear engineering.

4 w83] Maxwell, CM., “Mathematical Modclling of a Gas Fired Swimming Pool Water Heater”, Ph.D.
Thesis, Purdue University, in preparation.

322

323

A KOSLOFF/BASAL METHOD, 3D MIGRATION PROGRAM
IMPLEMENTED ON THE CYBER 205 SUPERCOMPUTER

L. D. PYLE
DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF HOUSTON
HOUSTON, TEXAS

S. R. WHEAT
BELL TELEPHONE LABORATORIES

NAPERVILLE, ILLINOIS

Title: A Kosloff/Basal Method, 30 Migration Proqram Implemented
on the CYBER 205 Supercomputer

Authors: L.D. Pyle* and S.R. Wheat**

ABSTRACT:

Conventional finite-difference migration has relied on approximations to
the acoustic wave equation which allow energy to propagate only downwards.
Although generally reliable, such approaches usually do not yield an accurate
migration for geological structures with strong lateral velocity variations or
)./ith steeply dipping reflectors. An earlier study by D. Kosloff and E. Baysal

the Full Acoustic Wave Equation) examined an alternative approach
based on the full acoustic wave equation. The 2D, Fourier-type algorithm which
was developed was tested by Kosloff and Baysal against synthetic data and against
physical model data. The results indicated that such a scheme gives accurate
inigration for cdmplicated structures. This paper describes the development and
testing of a yectorized, 30 migration program for the CYBER 205 using the
Kosloff/Baysal method. The program can accept as many as 65,536 zero-offset
(stacked) traces. In order to efficiently process a data cube of such magnitude,
(65 million data values), data motion aspects of the program employ the CDC
supplied bubroutine SLICE4, which provides high speed input/output, taking advan-
tage of the efficiency of the system-provided subroutines Q7BUFIN and Q7BUFOUT
and of the parallelism achievable by distributing data transfer over four differ-
ent input/output channels. The results obtained are consistent with those of
I<osloff and Baysal. Additional investigations, based upon the work reported in
this paper, are in prcgress.

This research was supported by the Control Data Corporation and the Allied
Geophysical Laboratories at the University of Houston.

*Department of Computer Science, Unversity of Houston, Houston, Texas
**Bell Telephone Laboratories, Naperville, Illinois

327

1.1

In an attempt to develop a migration technique that did not have

the faults of conventional finite-difference migration techniques,

Kosloff and Baysal introduced a migration technique based on the full

acoustic wave equation ill. While conventioml finite-difference

techniques used an approximation to the wave equation, they allowed

energy to propagate only dmnwards. Although these techniques yield

reliable :yigration in most cases, they usually do not yield an accurate

PigratiOn for geologicdl structures with strong lateral velocity

variations or with steeply dipping reflectors. The results of the

migration technique developed by Kosloff and Baysal shcwed their

technique to be able to accurately migrate these canplicated geological

structures. Furthermore, they found that there was no need to invoke

complicated schemes in an attempt to correct the deficiencies of

one-way equations 121.

328

-

ONOF'lS-IElZZ%NT.SJJ,IQX

Although the technique developd by Kosloff and Baysal provides an

excellent migration algorithm, it still is a two-dimensional migration

technique. The object of this research was to extend the 2D migration

technique of Kosloff and Baysal into a 3D migration technique that

would migrate a cube of 65,536 (or less) traces, each of length 1,024

samples. This goal miately imposed several problems that were mch

greater than extending the numerical methods of Kosloff and Baysal. Of

these problems, execution time and data motion were the most

significant. Although the 2D migration of Kosloff and Baysal was

implement& on a Digital Equipnent Corporation VAX-11/780 incorprating

a ETS-100 array processor, with favorable processing time, it was

observed that this hardware was much too ~~11 to expect it to handle

the 3D technique in a reasonable amount of time. Consequently, for its

high rate of computation, the CDC CiBER 205 located at Colorado State

University (CSU) was chosen to be the target machine. In Chapters II,

III and IV, the following aspects of the 3D migration technique are

developed: (1) the numerical methods involved: (2) the major features

of the program implementing the 3D migration technique; and (3) the

results of numerical tests of the program.

329

Conventional finittiifference migration has relied on

approximations to the wave equation which allow energy to propgate

only tiards. Although generally reliable, such equations usually do

not give accurate migration for structures with strong lateral velocity

variations or with steep dips. The migration technique presented here

is a three-dimensional extension of a two-dimensional migration

technique developad earlier by Kosloff and Baysal [31. The migration

technique presented here, referred to in this paper as the KEF

migration technique (for Kosloff/Baysal Fourier type>, is based on the

full acoustic wave equation, (2.1).

330

2.2 INHfi

It is assmed that input to the KBF program consists of a “cut@

of terosffset traces in (k,y,z=O,t) space. ‘I% KEF technique

presented here is designed to handle Nx + Ny such traces correspctlding

to?& l ~uniformlyqaced pints in the x and theydirectim. The

bn@nentatim discussed is designed so that the following must be truer

.
32 <- Nx <- 256 and Nx - 2l for sme integer i

32 <- Ny <- 256 and Ny - 2j for sag integer j

These restricticns were chosen so as to test program efficiency:

they do not apply, in general, to the KBF Scheme.

For each (x, y) pair, there will be Nt qle pints in time, &,

m - 1, Nt, at which values of pressurer P(x,y,~O,hl are given.

Nt nust also be a pwer of two.

In equation (2.1) it is assmed that the density, pt iS CmStant

and that the velocity function, c(x,y,z), will be provided by the

user. For testing pxpses, velocity is given by a Fortran function

subprogram in the co& presented in Appendix. Other forms

representing the vehcities my be used to replace the supplied

function.

331

2.3 nrE=m

Given P(x, y, z-0, tl for t - o, m, m, . . ., ‘IMAX

obtain P(x, y, zr t=O) for 2 - 0, mz, 2~2, zmx

Equation (2 .lI is Fourier transforned with respect to the o

assming density, p is constant. The seam3 order transformed

equations can then be reduced to a systen of first order equations in

the usual manner. If density Is constant, then we an write the

folldng series of equations:

P(x,y,z,t) = F -lP(x,y,z,w)

KS - 4+-1P
t

332

where

W’

where

+I
wl . .

l W n-1 I

& [!g] IL [3 -9 :] [g] (2*2)

which is of the form

where

(2.3)

(2.4)

(2.5)

333

Iht expressim gtransformd with m3pect to timP man6 that the

fmctial6 P(XtYa ftm) are repceaented &y Diecrete Fourier

Nt
P(x,y,z ,tml - c Ftx,Y, Wile Be-m (2.6)

i-l

where

(m-1) m for m - 1, 2,S + 1
2

(*(Nt+l))Ifi for m - F + 2, Nt

P is given by the Inverse Discrete Fourier Transform:

Nt
(2.7)

here

. 2+
rnt

(i - 1) for i - 1, 2, Nt +1
3

2+
rnt

(i-(Nt + 1)) for i - * +2,
2

. ..I %

.

334

L@ is the sampling interval in time; j = Jim Equation (2.6) is then
substituted in (2.1). This results in (2.21, which nust be satisfied

for each Wi, for i - 1, !k + 1.
2

Tl=b the Nt partial differential equations which provide a

discrete approximation to (2.11, involving unknown functions

P(x,y,z, t,) are replaced by !k +l partial differential equations
2

iIIVOlVing Mkn~ functions ~(X,y,Z,Wi). Note that in the transfO&

equations, dependence on time, t, has been eliminated.

With an appropriate approximation to
+9+ @

the "classifzl" 4* order Runge-Rutta algorithn is applied to integrate

equation (2.2) numerically in 2. The hector) amputational equaticns

are surranarized below:

Kl = Dz * f(z, v old)
pz K2rm*f(z+2, void++

K3 -Dz l f(z +
nz K2
2r %ld + 2)

K4 - Dx l f(z + Dz, v old + IC3)

%ew - void + (Kl + 2K2 + 2K3 + K4) / 6

335

2.4 K8F

The program has four n~~in subdivisions , whose tasks are summarized

beloW:

Part I : For each pir of (x,y) values, the corresponding

zero-offset trace of P(x,y,O,t) tiues is converted to another "trace"

of ~(x,y,O,w) M-lues by application of the discrete Fourier transform

(2.7).

Q&II: For each wi value (i=1,2,...,Nt) the F(x,y,O,wi) values

are re-ordered into wi-slices organized either sequentially in y for

each x, or sequentially in x for each y, as appropriate for further

transformations.

,l&LUX: Each wi-slice, from the transformed input cube of

"x,yrO,wi) values (see Figure 2.1) , is developed into an (X,y,Z,Wi)

'ube Of ~(x,y,Z,wi) values. TICS development is performed by

integrating equation (2.2) numerically. ?he resulting P(x,y,z,wi)

values are accunulated for all Wi for each (x,y,z) combination. Since

all the related exponential multipliers elmit equal 1 in rrqnitude

(see equation (2.611, this results in the generation of P(x,y,z,t=O)

values, as required. (Note: 5 = 0)

336

k?Qk: z = 0 throughout this data cube.

Figure 2.1
Transformed Input C&e

w-slice

There are two sub-problems of Part III:

=
&.rJ;L: Initial values for F- Z

are obtained by the application

of a twc--dimensio& Fourier transform to 6 follcwed by multiplication

by SQRrr-1 * P2
c2 _-

&I. Evanescent energy components are then

eliminated and iF Z is obtained by the application of a 2-dimensional
=

inverse Fourier transform to F- 2.

337

part III.2: B(x,y,z,w) and F-f z x,y,z,w) are propagated fran z to z+

Vz using the Runge-Kutta qth order method to integrate equation (2.2)

numerically. lb do this

mst be approximated four times for each Vz. This is achieved ty the

use of a two-dimensional Fourier transform, followed by multiplication

by -(kx2 +ky2L Kvanescentenergy is eliminated frm Bby applying a

two-dimensional Fourier transform to f;, obtaining i. For all (Kx,~)

pairs such that Kx2 + KY2 > wi/c(x,y,z), i is set to zero. Then a

two-dir&nsional inverse Fourier transform is applied to yield P', which

is input to the next step of numerical integration. Evanescent energy

isalsc rmovedfrun in the samemnner.

Part IV: For each (x,y), the P(x,y,z,t=O) values in Part III are

retrieved so as to be contiguous in Z. These space traces are each

Fourier transformed and the dmngoing energy is eliminated by filtering

out ampments with negative wave nmtbers K,. The resulting filtered

traces are inverse Fourier transformed, retaining only the real part of

the result, which is the desired 3D depth migration.

338

The speed and capacity of the computer available to an individual

researcher imposes certain restrictions on the types of problems that

can be solved. The CYE3ER 205's vector features and high sped scalar

processor provide a tool for solving problems in a matter of minutes

that would take on the order of days on a conventional scalar machine

(this speed increase depends, to a considerable extent, on the degree

to which it is possible to "vectorize" the scalar c&e). Of the

problqs that can new be solved using the CYBER 205, the migration

application presented here makes extensive use of the CYBER 205's

vector facilities. This chapter contains an overview of vector

processing on the CYEER 205 and an in-depth discussion of the data-flow

required by the KBF migration algorithm.

339

- -- _. . ._._ _. ._ ..--

3.2

This section deals primarily with the concept of vector machines;

hmever, it is not within the scope of this paper to bring the novice

up-to-date on vector computing. Several texts and ppers have been

written to perform that task. Hackney and Jesshope 141 present a

comprehensive text covering vector and parallel processors as well as

vector and parallel algorithms. Section 2.3 of Hockhey and Jesshopz

[51 is dedicated to the CDC CYEER 205. For more information on the

CYEER 205, see also Kascic 161.

The CYBER 205, announced in 1980, replaced its predecessor, the

CXXR 203. In turn, the CYBER 203, introduced in 1979, was a

re-engineered version of the STAR 100. Conceived in 1964, the first

STAR 100 became operational in 1973. The instruction set for the

vector operations in the STN? 100 were based, primrily, on the AFL

language. The STAR 100 was designed to execute at a rate of 100

Mega-flops (1 Mega-flop = one million floating point instructions

executed pzr second).

340

The CYBER 205 is a member of the family of 'pipelined" mchines.

Pipeline refers to an assembly-line style of performing oertain

operations: thusmore thanone set of operands can be operated upon at

a time. The vector processor of the,CYBER 205 has what are known as

vector pipes. These vector pipes are designed to stream contiguous

data elements (vectors) through their pipelines. Presently, the CiBER

205 can have as many as 'four vector pipes, all of which can operate

concurrently. A four pipe CYBEIR 205, processing 32-bit words, can

operate at a peak rate of 800 q-flops.

TIie various data Qpes utilized by the CYBER Fortran 2.0 language

include the following:

Connnents
--

: the machine is bit addressable
Half-word : 32-bit floating point
Ml-word : 64-bit floating point; 64-bit integer
Double-precision : 128-bit floating pint

two consecutive 64-bit words

341

VECTOR OPERATIONS AND CONSIDERATIONS

Vectors on the CUBER 205 are "pointed to" by vector descriptors.

A vector descriptor is,a 64-hit entity with the following two fields:

(1) Vector length, which cmsists of 16 bits and (2) Virtual address of

the first vector elment, which consists of the remaining 48 bits.

Thus, a vector can have a length ranging from 0 to 65,535. Note that a

bit vector can be no longer than 65,535 elements even though it

consists of only 1024 64-hit memory words.

Vector operations ame in a variety of forms on the CYBER 205,

sune of which are displayed in Table 3.1.

Table 3.1. Vector Operation Examples.

DIHEXSION A(lOO), B(1001, C(100)

L = 100

EQUIVALEXC
NUMBER VECTOR Q3DE SCAM? CDDE
-- -- ----

(1) A(1; L) = Q8vINTL(O, 1; L) co10 I=l, L
10 A(I) = I - 1

(2) B(1; L) = AU; L) * 20.0 co20 I=l,L
20 B(I) = A(I) * 20.0

(3) C(1; L) = A(1; L)*2.O+B(l; L) In 30 I = 1, L
30 C(I)=A(I)*2.0+B(I)

342

The examples in Table 3.1 are rather simple but resemble my

operations in scientific programs. Examples 1 and 2 show a vector

function call and a vector-scalar operation. Example 3 shaws a "linked

triad” operation. A linked triad operation takes advantage of CYBER

205 hardware which supports such operations. As one can sea in Table

3.2, the linked triad operations are quite efficient. An operation is

generally considered a linked triad when it consists of two vector

operands and one scalar operand.

In certain situations, the results of sane elements of a vector

opration need not be saved. In this case, there is a mechanism for

avoiding storage which involves a control vector. A control vector iS

a bit vector that specifies the storage of vector results. The control

vector will be the same length as the result vector and where it has a

value of one the corresponding result vector element will be saved and

where it has a value of zero the corresponding result vector element

will not be saved. The programmer also has the choice of reversing the

meaning of the one's and zero's in the control vector.

A certain mnber of clock cycles are needed to set up the vector

pipes. As this setup time is constant for a given operation, it is

mre efficient, in terms of total execution time, to reduce the number

of vector operations by increasing the vector lengths whenever

pssible. Table 3.2 shows the set-up times, as well as the timings for

the actual operations for various operations on the CYBER 205.

343

Table 3.2. Vector Timing Information

Numhx of Numberof
Vector Instruction Set-up Cycles Operating Cycles

--- I--

Addition, Subtraction 51 N/4

Multiplication 52 N/4

Division, Square root 80 N / .61

Linked triad 84 N/4

Where:
N= Vector length
1 Cycle =2onano-seconds
The vector operations are on 32-bit words

344

The XBF migration technique is such that ahxt all of the

necessary operations can be vectorized. When working with a pxticular

u-slice, all of the cperations, including the two-dimensional FTPs,

are vector operations. T%e ccxnputations performed at my given pint

of the artega-slice must te performed at all of the points. If there is

a certain criteria that causes saxthing different to occur at a given

ancqa-slice pint, a Wntrol vector czlll be created, dynamically, and

the operation cM still be performed in a vector manner. An example of

this rrq be found in the routine cu?DFF where the evanescent energy is

elhinated, In 6-2~~ there is no

prticular opzration in the KBF migration scbene that can not be

treated as a vector opxation. To en@size this paint, one should

examine the technique pesentcd In chapter 2 and notice that there are

no tricky operations that would prevent vectorization. In prticular,

it is imprtant to note that there are no operations that have the

follahq structure:

W 100 I = 1, N
X(I) - F(Y(I))
IF (X(I) .LT. VALJ 00 T0 200

100 awrTNuE
200 Q3NTINuE

The above wde can not be efficiently vectorized hcaum of the

inherently quential Mture of the axnptations.

345

As previously discussed, a program iqlementing the KBF migration

technique, extended into three dimensions, is easily expressed in terms

of vector operations. !%e program developed here contains very few

scalar operations, rmny of which are operations needed in order to

control various vector instructions or vector subroutine calls. Having

such a match of software to hardware, one might conclude that there are

no retraining barriers to running the program. There are, tiever, a

few major items that one tends to overlook, being overwhelmed by the

computational per of the CYBER 205. The greatest of these is the

data motion required to keep the (,‘yBm 205 vector pipes busy.

One penalty for the use of vector operations is that the data must

be contiguous in memory for greatest efficiency (let alone for scme

vector operations to run at all). Furthermore, the vectors must reside

in main memory as much as pssible in order to prevent sure death fran

thrashing. With this in mind, one must realize that the memory

requirement for the vectors that are necessary to perform a single step

of the integration of one omega slice is quite large. For example, a

(256 by 256) ccanplex XY plane will require eleven vectors of length

131,072 half-words. These,. along with various suprt vectors,

arnprise 12 large pages (1 large page = 65,536 full-words). This is

slightly less than half of the memory available to a user on a

346

2-msgaword 205, however it is about all one can expect to get for any

reasotile'period in a time-sharing envirornnent. But ,this' is really

just the tip of the iceberg - these are just the work arrays. The

total data set consists of the input data cube, the work arrays,- and

the output data cube.

Continuing with the previous example, the input cube could very

well be of size 256*256*1024 half-words and the output cube could be as

much as twice the size of the input cube (the size of the output cube

depends upon the number of ZSTEXS in the migration). This would be a

total of 201,326,592 half-words, which is equivalent to 1536 large

Fag= l
obviously, this is much more data than any CYBER 205 can have

in memory at any given tin-e. Consequently, the question of how to

handle the data-flew arises. A solution that one may consider is to

declare the data cubes to be huge arrays and to let the virtual rrunory

mechanism handle the data cubes.

To consider declaring the two data cubes as arrays, one must

realize that access to these two arrays would have to be in a

contiguous manner. Otherwise severe thrashing would result. In the

case of the KBF migration algorithm, access to the data cubes must be

done in several ways that would break the rule of contiguous access.

!mls, it would be wise to check into at least one alternate ~thod of

handling these data cubes as large arrays.

347

Before presenting the data motion n-&hod used in this study, the

need for efficiency must be established. Ccntinuing with the previous

example and without discussing the code in detail, the subroutine RHS3

takes on the order of 100 milli-seconds to run, each time it is called.

In this example, RHS3 would be called on the order of 4*512*512

(1,048,576) times. The tin-e needed for all of these calls is

approximately 29 hours. Thus, any tin-e for performing the data-motion

is added onto the 29 hours. Therefore, one needs to find a mechanism

to perform the data-motion without making the program run for an

unacceptable amount of time.

348

CXBEZ? 205 Fortran provides several routines that my be used to

implment I/O that runs concurrently with other instructions being

executed as well as with other I/O. These routines include QIBUFIN,

Q-IBUKXJT, andQ7WAIT. For detailed information on these routines, see

the CDC CYBER 200 EURTPAN VERSION 2 m.1~1 t71. A typical use for

these routines would be as follows:
.
.

CALL Q7BUF&JTL..............)
CALL hoRK(. 1

.

.

.

In this example where the programmr wishes to write information

out to a unit and have the routine KlRK run amcurrently with the I/O.

In general, as long as KRK does not use the I/O unit referred to in

the Q7BUFCUT call, it can dc anything it wishes. Thus, there is CPU

activity concurrent to I/O activity.

Another example where two I/O requests cause concurrent I/O, is as

follms:
.
.

CALL Q7BUF;NL.............)
CALL, Q7BUFWT(..............)

.

.

.

349

According to the UX CYBER FORTRAN 2 mual 181, these calls are

1-t so long as they do not access the same data block on the same

disk. Also, twoQ7BUFIN, two Q7BUEWT calls, or a Q7BUFIN and a

Q7EWEWT call can be active at one tirrre for a given unit.

It should be obvious that these "47" calls are the basis of a

solution to the problem of data-flow that was presented in the previous

section. Indeed, they are: yet they are only the basis of the method

used in this study. Dr. Bjorn Mossberg 191, of Control Data

Corporation, wrote a utility kna~n as SLICEI. Mossberg used the "Q7"

utilities; hmever, the scheme he developed is much mxe elaborate

than a series of Q7 calls to a prticular I/O unit.

It is not within the scope of this pper to duplicate Mossberg's

documentation of SLICEI. Hcwever, the concept and the terminology of

SLICE4 will be presented as it applies to this study. For efficient

operation, SLICE4 must tx tightly integrated into the master program.

merefore, its terminology affects the view that one takes of the

mster program.

In this study, two im@mentations of SLICE4 wereneededand used;

one for the input data cube and one for the output data cube. To

explain the use of !ZLICE4, only the input data cube will be treated.

The output data cube is'handled in a similar mer.

350

II

The first step in using SLICE4 is to -se a coordinate system

upon the data cube such thatthecube is NI by N2 by N3 elements in

size, where Nl is the number of elements in what one normally considers

the 2 direction, N2 is the n&r of elements in the X direction, and

N3 is the nlrmber of elements in the Y direction. The next step is to

define a second coordinate systen on the data cube. Instead of being

coordinates of individual data items, this second coordinate system

gives coordinates of "super-blocks.' Super-blocks are small cubes of

the original data set. The super-block coordinate system has Ml

super-blocks in the l-direction, E62 in the 2-direction, and NS3 in the

3-direction, where Nsl and NS2 must be multiples of four. E3 does not

have this restriction; however, for greatest efficiency, it should be

one or a multiple of four. The reason for the multiple of four rule is

that the super-blocks will reside on four different I/O units. M

matter which direction the cube is accessed, each I/O unit will have

one quarter of the super-blocks accessed. This is not the case when

only a prtial row or column of super-blocks is accessed; thus, it is

most efficient to access a complete rem or column. If it shouldhappen

that mOre than one I/O unit be controlled by a given controller, then

SLICE-4 will still execute, but in a less efficient manner (i.e. the

parallelism is prtially inhibited). Thus, one may access any four

adjacent super-blocks at a cost which is one fourth the ast of

accessing the same data with conventional techniques.

351

The super-blocks thenselves have a coordinate structure imposed

upon them. This coordinate structure is LJ by I2 by W. Where Ll is

the n&r of elements fran the data cube in the l-direction: X2 and

L3 are defined in the sama manner for their individual directions.

Summarizing the terminology presented so far, the original data

cube is broken up into El by E2 by NS3 super-blocks. Each

super-block has LJ by L2 by W data elements. Thus the follming rules

must apply:

N =N!31*Ll with E1=4*i, i=> 1

z
=IS2*L2 with E2=4*jr j => 1
=NS3*L3

The rows and columns of super-blocks are referred to as slices. A

l-slice is some column of super-blocks in the l-direction, a 2-slice is

scnne row of super-blocks in the 2-direction, and a 3-slice is scme row

of super-blocks in the 3-direction. One may access all, or just sax,

of the super-blocks of a slice via SLICE4. However, in this study,

only the most efficient access is lzerformed - accessing all

supx-blccks of a given slice. As access can be by any given slice,

SLICE4 must have the super-blocks allforrnattedin the samernanner.

Thus, when accessing a given slice, the slice is written into a buffer

by SLICE4 and the user must re-formatthedata frcan the buffer intoa

work array in the format that correspxds to the direction of access.

352

One needs to be careful to have enough array and buffer space to

access the data cube in all the necessary directions. Thus, the size

of the super-block cmes into question. The 'larger the super-block,

the fewer accesses to the data cube are needed and vita versa. In this

study, the LJ dimension was set permanently to the value of 2. The

reason for this is that, as one recalls fran the migration technique, a

complete XY plane is processed at arry given time and there is only

enough rmmxy space to have two input planes in memory at the same

time.

353

As discussed in secticrr 3.4, it would take over 29 hours of

executicm time to migrate the maximum (assumed) data cube; thus for

testing prpses, an inpt cube of size (64x64~~641 MS used. For both

of the test runs discussed here, all of the traces consisted ampletely

of zeros, except the center trace that had a single wavelet peaking at

wle 16 (in tine). l%e ccrrectly migrated result, in this case,

consists of a ht&sphere. The first run (Figures 1 md 2) incorporated

a padding in the time direction to &lay the wraparound effect

inherent in Fourier algorithms. The second run (Figures 3 and 4) did

not incorporate a @ding - thus, wraparound effects apeared. The

first run took 240 CR1 seccnds and the second run took 115 CFU seconds.

w: The migraticn of the input cube described above,

using a constant velocity of 3000 m/s, a Dz interval of 6.0 mters, a

DX interval of 12.0 mters, a Dy interval of 12.0 ureters, and a time

interval of 4 .O milli-seconds, yields the results shown in Figures 1

and 2. Figures 1 and 2 are slices of the outprt cube in the X2 and in

the YZ directions, respectively, intersecting at the oenter of the

output cube Wte the absence of the wrap-around effect).

354

J&L&xQ: The migration of the same inprt cube used in Test Run

1 using tne same sampling rates in all dimksions, but with a velocity

interface (see Figure 3; VI = 4000 m/k; V2 - 3000 m/s), yields the

results displayed in Figures 3' and 4. Note the wraparound effect

present in these figures.

4.2 S-spT.FaDF

Until a superior algorithm for performing the I/O required by the

KBF migration algorithm appears, SLICE4 will remain the most efficient

method available to perform the I/O task. -ever, should a CYBER 205

ever lx equipped with 8, or even 16, I/O channels, SLICE4 should easily

be adapted to create SLICE8 and SLICE16 versicns. Until then, there is

little chance of decreasing the tima required to perform the I/O.

Other than I/O, the Runge-Kutta 4* order algorithm emplqed in

the KBF migration technique is the most expensive feature.

Consequently, use of a less costly method for numerical integration

(e.g., a nailti-point method, using the Runge-Kutta method t0 get

started) might result in increased cunputational efficiency.

The 3D KBF migration program, implemented on the CYBER 205

Suparcanputer presented in this thesis, yields results that are

consistent with those of Kosloff and Baysal [lOI. This was confinned

by Kosloff [ill. Thus, a 3D migration programr using the KBF migration

technique based on the full acoustic wave equation) permitting lateral

velocity variations is new available for use on the CYBER 205.

355

‘I

I

I
I

‘I
I

ii] I
‘II ii1

Figure 1

._..

I
‘I
1 I

III
/I !
I’

Figure 2

356

I

“I

ii

I

‘I !
ij

I .
I I

,

II
‘I I,

I
I

Figure 3

-- Velocity
Interface

Figure 4

357

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Kosloff, D., and E. Baysal, qigration With the Full Acoustic Wave
. . Equation," SS

Review, No. 9 (19821, pp. 151-165.

Kosloff and Baysal, p. 152.

Kosloff and Baysal, pp. 151-165.

Hackney, R. W., and C. R. Jesshope, m .

. ecture. F%grw4 (Bristol: Adam Hilger Ltd.,

1981).

Hackney and Jesshope, pp. 95-126.

Kascic, M. J. Jr., VectOrPr~Qk&QQ (St. Paul:

Control Data CorIpration, 1978).

Control Data Corp., m~vber 200 Fofis (St. Paul: Control

Data Corporation, 1981).

Control Data Corp.
. * Contrpl Data Corp., M ri&rv Utll,&y .

Kosloff and Baysal, p. 155.

Personal interview with Dan Kosloff, 25 August 1983.

358

VECTORIZATION OF A PENALTY FUNCTION
ALGORITHM FOR WELL SCHEDULING

ILYAS ABSAR

SOHIO PETROLEUM COMPANY

SAN FRANCISCO, CALIFORNIA

Vectorization of a Penalty Function Algorithm for tie11 Scheduling

Ilyas Absar

SOHIO Petroleum Co.

San Francisco,California

Abstract:

In petroleum engineering, the oil production profile of a reservoir can be

simulated by using a finite grided model. This profile is affected by the

number and choice of wells which in turn is a result of various production

limits and constraints including, for example, the economic minimum well

spacing, the number of drilling rigs available and the time required to drill

and complete a well. After a well is available it may be shut-in because of

excessive water or gas productions. In order to optimize the field

performance a penalty function algorithm was developed for scheduling wells.

For an example with some 343 wells and 15 different constraints, the

scheduling routine vectorized for the Cyber 205 averaged 560 times faster

performance than the scalar version.

351

__--.-.-- - ._ . _. ._-

Introduction:

ldlathematical nodelling of the fluid production from a naturally occurring

reservoir involves considering the reservoir as a network of interconnected

blocks. To each grid block is associated a ijeologic description through

properties, e.g., thickness, porosity, permeability, etc. Each grid block is

considered to be in material balance with its surroundings, i.e., the amount

of fluid in the block at time t +At is equal to the amount of fluid in that

1 At minus fluid outflux block at time t plus fluid influx in the time interva

in the time intervalAt.

In Figure lA, the reservoir is shown by a curved boundary. Overlaid

areally is a rectangular grid. The sizes of the blocks can be chosen to

represent the geological features of the reservoir as accurately as possible.

Figure 18 shows a two dimensional cross-section of a reservoir and the yrid

used for its simulation. Notice that the reservoir contains water, oil and

sas in various regions, and only some blocks are in communication with the

wells by means of perforations in the well bore. To simulate the production

profile, the material ba7ance of the grid blocks in which wells are perforated

must also take into account the fluid production or injection. In this manner

one obtains pressures and saturations for each of the yrid-blocks. For

details on mathematical modelling of oil reservoirs please refer to a standard

text, for example, references 1 and 2.

Once a reservoir simulator is formulated, it can be used in many ways,

e.g.:

1. Assist in makiny economic decisions for field operation, e.g., the

investments to date at Prudhoe say exceed $9 billion.

2. Desiyn of production strategy. The effect of changes in the number,

location, spacing, or timiny of wells can be studied.

3. Prediction of reservoir performance.

4. iilatchiny of the production history.

362

When an oil field is developed, of course the most important objective is

to maximize oil recovery. However, this objective is tempered by limitations,

economic and physical, e.g., costs and capacities of various installations and

devices.

The dashed curve in Figure 2 represents oil production when all wells

flow at their maximum capacity. The area under this curve represents

cumulative oil production. The ratio of cumulative oil production to in-place

oil represented as a fraction or percentage is called the Oil Recovery

Factor. If facilities were constructed for this production profile, they

would have to be constructed to handle oil production at the maximum rate,

q max. Economic considerations give us a target oil rate, qy, less than qmax,

at which oil production can be sustained for a period of time. The solid

curve in Figure 1 represents this strategy. Note that sometimes this can be

achieved without appreciable sacrifice in cumulative oil production.

Well Scheduling Problem:

Once qt is established, the problem of optimal scheduling, i.e., selecting for

operation a given number of wells (say n) can be represented mathematically as

follows:

Maximize, n

r. qi4qT
i=l

The waximun production rates of oil, gas and water are, however, limited to

the capacity of the reservoir facilities. Thus, the field oil production is

subject to constraints of the form:

c Xiqi 6 L
i

363

Suppose (k-l 1 we 11s have been already chosen.

For choosing the k th well subject to a constraint of the form:

where,

qi is the oil production rate from well i,

% is the target oil production rate for the field,

xi is either 1 or the gas-oil ratio or the water-oil ratio for well i,

xioi is then the oil or gas , or water production/injection rate.

and L is the oil or gas or water production of injection constraint.

Some examples of these limits are:

1. Fieldwide gas handling capacity,

2. Water injection limit,

3. Oil production limit at a station due to pipeline size,

4. Gas-lift capacity available.

In order to select wells for production, each well can be assigned a

priority. In the penalty function approach priority assignment, is made with

a function which becomes large as a particular constraint approaches violation,

a simple penalty function is:

k-l

p(k) = (zxiqj + Xkqk)/ L

i=l

The penalty function p(k) has a value for each of the available wells,

and arranyes the set of available wells in order according to this particular

constraint.

364

When there are several (say m) constraints, penalty functions pi(k),

pz(k) ---pm(k) can be obtained similarly.

Since each constraint is individually fatal for well scheduling purposes,

the violation of one constraint is as bad as any other.

Hence, an overall penalty function can be of the form:

p(k) = max P j
j=l . . . m

Results and Discussion:

The implementation of this scheme involves calculating for each available

well, m different pi (k) and then obtaining an overall penalty, p(k) as the

maximum of these m values. Thereafter the well with the lowest value of p (k)

is selected. This procedure is repeated selecting one well at a time until

the target rate q is achieved without violating any of the constraints. If

the target rate cannot be achieved without violating one or more constraints,

we are on the decline portion of the production curve.

This scheme was programmed into a three dimensional, three phase (oil,

gas, water) simulator. The simulator originally used a simple prioritization

scheme based on gas-oil ratios. When a scalar version of the penalty function

algorithm was introduced, the simulator ran appreciably slower. It was

therefore decided to vectorize the penalty function algorithm.

TO calculate the penalty function in a case with n wells and m

constraints declare an array p (n, ml). Usually n is much greater than m.

For each of the m constraints vectorize the penalty calculation, e.g.,

for constraint i, store the values of pi(k) in the elements of p (n, m),

starting with p (1, i) and ending at p (n, i).

Next, using a WHERE comparison statement pick out the largest of the m

values for each well. We now have the priority p (k) for each well. Use the
il8SnINI call to pick out the minimum value. If this value exceeds l., no well

can be chosen without violating a constraint.

365

TABLE 1,

No. of wells

Case 1

115

Case 2

343

No. of constraints 9 15

Average Well

Selection Time (sees)

Scalar:

Vector:

Scalar: Vector

Ratio

112

.14 1.6

.001245 .00287

560

A summary of results for two cases is presented in Table 1. For a

reservoir with 119 wells and nine constraints, the vector algorithm was on the

average 112 times faster than the scalar version. For a larger example, Case

2 in Table 1, 343 wells with 15 constraints, the vector algorithm achieved

even more spectacular results, an average acceleration factor of 560.

The details of Case 1 are represented graphically in Figure 3. In the

scalar algorithm, the time required for selection of wells increases

monotonically for each subsequent selection. The selection of the first well

required only .005 sets while the selection of the 65th well required .226

sets. However, in the vector algorithm, each well selection required .001244

sets, except for the first, which required .00155 sets.

Similarly, for Case 2, the vector algorithm took .00287 sets for each

bdell selection, except for the first well, for which it took .00447 sets. The

scalar algorithm had a monotonic increase from .0185 sets for the first well,

to 2.647 sets for the 220th. we77. This means that the selection of the 220th

well was some 920 times faster in the vector algorithm as compared to the

scalar version.

366

-

Conclusions:

Clearly as the number of wells and the number of constraints increase,

the advantage of the vectorized version over the scalar version becomes

yreater.

The reservoir simulator with the vectorized well selection scheme,

including the more complicated penalty function scheme, ran faster than the

original version with the simpler scalar well selection scheme.

In short, judicious use of vectorization can make feasible highly

desirable enhancements to larye simulators.

References:

1. D. W. Peacemain, Fundamentals of Numerical Reservoir Simulation, Elsevier

Scientific Publishing Company, R.Y., 1977

2. K. Aziz and A. Settari, Petroleum Reservoir Simulation, Applied Science

Publishers Ltd., London, 1979

367

FIGURE 1 A.
RECTANGULAR GRID TO REPRESENT
A RESERVOIR. EACH BLOCK MAY
HAVE DIFFERENT THICKNESS AND
POROSITY.

GA

--WI I ml
WATER

\

FIGURE 1 B. WATER

CROSS-SECTION OR A GRID WITH
DIFFERENT TYPES OF WELLS.

368

OIL
P PRODUCTION A

RATE RATE

9 9 max - max - --------- ---------
/ \ I\

/ -\ \
// \

1’
\

\

9, --- .-!

/
I

\
\

\
\

\
\

\

TIME -

FIGURE 2.

PRODUCTION PROFILE FOR AN OIL FIELD.

369

SELECTION
TIME

(SEC.)

.22

.20

18

.18

.14

.12

.lO

.08

.08

.04

.02

c

.
.
.

F

.

.

. .

.

VECTOR
I I I I I I I b

6 10 20 30 40 50 80 70 80 90 100
SEQUENCE NUMBER

FIGURE 3.

aU.S.COVERNME~PPRINTINGOFFICE:19~4-739-Ol(Y 59 REGION NO. 4

370

BIBLIOGRAPHIC DATA SHEET

1. Report No.
NASA CP-2295

2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle

CYBER 200 Applications Seminar

7. Author(s)
J. Patrick Gary, Compiler

?. Performing Organization Name and Address

Goddard Space Flight Center
Greenbelt, Maryland 20771, with

Control Data Corporation
Minneapolis, Minnesota 55440

12. Sponsoring Agency Name and Address

National Aeronautics and Space
Administration
Washington, D.C. 20546

5. Report Date

March 1984
6. Performing Organization Code

935
8. Performing Organization Report No

84~5215
10. Work Unit No.

11. Contract or Grant No.

13. Type of Report and Period Coverer

Conference Publication
October 10-12, 1983

- 14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

This document contains the proceedings of the CYBER 200
Applications Seminar, hosted by Goddard Space Flight Center
with Control Data Corporation, held on October 10-12, 1983.
The seminar was attended by more than 100 participants,
including representatives from the United Kingdom Meteoro-
logical Office and CSIRO in Australia, four other countries,
fifteen U.S. universities, ten Federal research centers, and
numerous private industries. The subjects covered included
application topics in Meteorology/Oceanography, Chemistry,
Math Algorithms, Fluid Dynamics, Monte Carlo Methods,
Petroleum, Electronic Circuit Simulation, Biochemistry,
Lattice Guage Theory, Economics, and Ray Tracing. This
document is comprised of the majority of the papers presented
at the seminar.

;7. Key Words (Selected by Author(s))

Vector Processing
Numerical Techniques
Supercomputers
Vectorization

18. Distribution Statement

STAR Category 61
Unclassified-Unlimited

9. Security Classif. (o’f this report) 20. Security Classif. (of this page)

Unclassified Unclassified
----p-

1 ---- _. ^ ,._ ^ e., "1 ,.A.,..

_. -

